Skip to content

Commit

Permalink
Do lora cast on GPU instead of CPU for higher performance.
Browse files Browse the repository at this point in the history
  • Loading branch information
comfyanonymous committed Sep 19, 2023
1 parent 0109431 commit b92bf81
Showing 1 changed file with 12 additions and 12 deletions.
24 changes: 12 additions & 12 deletions comfy/model_patcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,13 +187,13 @@ def calculate_weight(self, patches, weight, key):
else:
weight += alpha * w1.type(weight.dtype).to(weight.device)
elif len(v) == 4: #lora/locon
mat1 = v[0].float().to(weight.device)
mat2 = v[1].float().to(weight.device)
mat1 = v[0].to(weight.device).float()
mat2 = v[1].to(weight.device).float()
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = v[3].float().to(weight.device)
mat3 = v[3].to(weight.device).float()
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
Expand All @@ -212,18 +212,18 @@ def calculate_weight(self, patches, weight, key):

if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(w1_a.float(), w1_b.float())
w1 = torch.mm(w1_a.to(weight.device).float(), w1_b.to(weight.device).float())
else:
w1 = w1.float().to(weight.device)
w1 = w1.to(weight.device).float()

if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device))
w2 = torch.mm(w2_a.to(weight.device).float(), w2_b.to(weight.device).float())
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device))
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2_b.to(weight.device).float(), w2_a.to(weight.device).float())
else:
w2 = w2.float().to(weight.device)
w2 = w2.to(weight.device).float()

if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
Expand All @@ -244,11 +244,11 @@ def calculate_weight(self, patches, weight, key):
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device))
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device))
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.to(weight.device).float(), w1b.to(weight.device).float(), w1a.to(weight.device).float())
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2b.to(weight.device).float(), w2a.to(weight.device).float())
else:
m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device))
m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device))
m1 = torch.mm(w1a.to(weight.device).float(), w1b.to(weight.device).float())
m2 = torch.mm(w2a.to(weight.device).float(), w2b.to(weight.device).float())

try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
Expand Down

0 comments on commit b92bf81

Please sign in to comment.