Based on package of eda-explorer (Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., & Picard, R. Automatic identification of artifacts in electrodermal activity data.In Engineering in Medicine and Biology Conference. 2015.)
- extract_E4_features.py
- EDA_Peak_Detection_Script.py
- load_files.py
Notes: the example codes assume for each participant data are collected from baseline and session
- extract_feature.ipynb: extract ACC,TEMP,EDA,EDA peaks,IBI features of E4 data
- e4_stats_tests.ipynb: performing paired t-tests using SciPy
- svm_hyperparam.ipynb: tuning hyperparameters of svm model using Scikit-Learn
numpy==1.16.2
scipy==1.2.1
pandas==0.24.1
scikit-learn==0.20.3
matplotlib>=2.1.2
PyWavelets==1.0.2
Yifei (Winnie) Li, Akane Sano, Rice University Computational Wellbeing Group