forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bugfix][Kernel] Add
IQ1_M
quantization implementation to GGUF kern…
…el (vllm-project#8357) Signed-off-by: Alvant <alvasian@yandex.ru>
- Loading branch information
Showing
8 changed files
with
548 additions
and
162 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
from pathlib import Path | ||
from typing import List | ||
|
||
import pytest | ||
import torch | ||
from gguf import GGMLQuantizationType, GGUFReader, ReaderTensor, dequantize | ||
from huggingface_hub import snapshot_download | ||
|
||
import vllm._custom_ops as ops | ||
|
||
GGUF_SAMPLE = snapshot_download("Isotr0py/test-gguf-sample") | ||
|
||
|
||
def get_gguf_sample_tensors( | ||
hidden_size: int, | ||
quant_type: GGMLQuantizationType) -> List[ReaderTensor]: | ||
sample_dir = GGUF_SAMPLE | ||
filename = f"Quant_{quant_type.name}_{hidden_size}.gguf" | ||
sample_file = Path(sample_dir) / filename | ||
return GGUFReader(sample_file).tensors | ||
|
||
|
||
DTYPES = [torch.half] | ||
# Hidden_size for testing, must match the sample file in HF repo, | ||
# we have `hidden_size = 256, 1024` for test in HF repo currently. | ||
HIDDEN_SIZES = [256, 1024] | ||
NUM_TOKENS = [7, 83, 128, 2048] # Arbitrary values for testing | ||
SEEDS = [0] | ||
QUANT_TYPES = [ | ||
# i-matrix | ||
GGMLQuantizationType.IQ1_M, | ||
GGMLQuantizationType.IQ1_S, | ||
GGMLQuantizationType.IQ2_S, | ||
GGMLQuantizationType.IQ2_XS, | ||
GGMLQuantizationType.IQ3_S, | ||
GGMLQuantizationType.IQ3_XXS, | ||
GGMLQuantizationType.IQ4_NL, | ||
GGMLQuantizationType.IQ4_XS, | ||
# k-quants | ||
GGMLQuantizationType.Q2_K, | ||
GGMLQuantizationType.Q3_K, | ||
GGMLQuantizationType.Q4_K, | ||
GGMLQuantizationType.Q5_K, | ||
GGMLQuantizationType.Q6_K, | ||
# standard quantization | ||
GGMLQuantizationType.Q4_0, | ||
GGMLQuantizationType.Q5_0, | ||
GGMLQuantizationType.Q8_0, | ||
] | ||
|
||
|
||
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) | ||
@pytest.mark.parametrize("dtype", DTYPES) | ||
@pytest.mark.parametrize("quant_type", QUANT_TYPES) | ||
@torch.inference_mode() | ||
def test_dequantize(hidden_size: int, dtype: torch.dtype, | ||
quant_type: GGMLQuantizationType): | ||
tensors = get_gguf_sample_tensors(hidden_size, quant_type) | ||
for tensor in tensors: | ||
shape_str = tensor.name.split("_")[-1] | ||
shape = map(int, shape_str.split("x")) | ||
|
||
ref_output = torch.tensor(dequantize(tensor.data, quant_type), | ||
device="cuda").to(dtype) | ||
output = ops.ggml_dequantize(torch.tensor(tensor.data, device="cuda"), | ||
quant_type, *list(shape)).to(dtype) | ||
|
||
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=4e-2) | ||
|
||
|
||
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) | ||
@pytest.mark.parametrize("dtype", DTYPES) | ||
@pytest.mark.parametrize("quant_type", QUANT_TYPES) | ||
@torch.inference_mode() | ||
def test_mmvq(hidden_size: int, dtype: torch.dtype, | ||
quant_type: GGMLQuantizationType): | ||
torch.cuda.manual_seed_all(0) | ||
|
||
tensors = get_gguf_sample_tensors(hidden_size, quant_type) | ||
x = torch.rand((1, hidden_size), dtype=dtype, device="cuda") | ||
for tensor in tensors: | ||
weight = torch.tensor(dequantize(tensor.data, quant_type), | ||
device="cuda").to(dtype) | ||
ref_output = x @ weight.T | ||
|
||
qweight = torch.tensor(tensor.data, device="cuda") | ||
output = ops.ggml_mul_mat_vec_a8(qweight, x, quant_type, | ||
qweight.shape[0]).to(dtype) | ||
|
||
torch.testing.assert_close(output, ref_output, atol=1, rtol=1e-1) | ||
|
||
|
||
@pytest.mark.parametrize("num_tokens", NUM_TOKENS) | ||
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) | ||
@pytest.mark.parametrize("dtype", DTYPES) | ||
@pytest.mark.parametrize( | ||
"quant_type", | ||
[ | ||
# k-quants | ||
GGMLQuantizationType.Q2_K, | ||
GGMLQuantizationType.Q3_K, | ||
GGMLQuantizationType.Q4_K, | ||
GGMLQuantizationType.Q5_K, | ||
GGMLQuantizationType.Q6_K, | ||
# standard quants | ||
GGMLQuantizationType.Q4_0, | ||
GGMLQuantizationType.Q5_0, | ||
GGMLQuantizationType.Q8_0, | ||
]) | ||
@torch.inference_mode() | ||
def test_mmq(num_tokens: int, hidden_size: int, dtype: torch.dtype, | ||
quant_type: GGMLQuantizationType): | ||
torch.cuda.manual_seed_all(0) | ||
|
||
tensors = get_gguf_sample_tensors(hidden_size, quant_type) | ||
x = torch.rand((num_tokens, hidden_size), dtype=dtype, device="cuda") | ||
for tensor in tensors: | ||
weight = torch.tensor(dequantize(tensor.data, quant_type), | ||
device="cuda").to(dtype) | ||
ref_output = x @ weight.T | ||
|
||
qweight = torch.tensor(tensor.data, device="cuda") | ||
output = ops.ggml_mul_mat_a8(qweight, x, quant_type, | ||
qweight.shape[0]).to(dtype) | ||
|
||
torch.testing.assert_close(output, ref_output, atol=1, rtol=1e-1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters