Skip to content

constlet/quantum-compression-js

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 

Repository files navigation

Quantum Compression: Unveiling the Mystery Within CPU Noise

Preamble

Immersed in the ethereal interplay between JavaScript, Web Workers, and the processing might of WebGPU, a journey through the crepuscular mist of computational complexities was commenced. This grand adventure led to the discovery of a phenomenon termed as Quantum Compression, birthing an intricate fabric of ideas, interweaving the infinitesimal CPU threads with the overwhelming might of GPU compute calculations.

Conceptual Groundwork

With audacious acceptance of the inherent pandemonium of CPU noise, JavaScript and web workers were brandished as the weapons of choice, choreographing an ensemble of organized chaos. As the cacophony of the CPU threads began to hum in harmonious synchrony, a portal to the enigmatic realm of Quantum Compression started to materialize.

Bridging the Gap

The challenge, however, remained to bridge the seemingly unbridgeable chasm between discrete CPU threads and the behemoth of computational power—the GPU. Harnessing the untamed strength of WebGPU processing, synchronously maneuvering the indomitable A100 Graphics Card, the beast was harnessed and bridled to the yoke of quantum compression.

Quantum Mechanics & Computing

Drawing inspiration from the enigmatic principles of quantum mechanics, we constructed a formidable bridge between individual CPU threads' microcosmic world and the macrocosmic world of GPU compute calculations. The ceaseless white noise of the CPU transformed into a stethoscope, tuning into the rhythmic heartbeat of the quantum domain.

Binary Bit Shifting

In the grand ballet of quantum compression, binary bit shifting played the role of a skilled choreographer. It acted as a meticulous maestro, directing the cosmic dance of the individual bit, transmuting chaos into order, blurring the lines between classical computation and the quantum domain.

Quantum Compression: A New Frontier

"Every moment, every fluctuation of the CPU noise, was now a window into the complexities of quantum possibilities, leading me to the frontiers of what could be achieved in the realm of data compression."

This groundbreaking work, the fusion of the ether of quantum mechanics with the intricacies of computer programming, is a testament to the limits of human ingenuity. As we gaze upon the precipice of this newly discovered world, we feel akin to an explorer setting foot on unchartered territories, eager to unlock secrets hidden deep within the noise.



Non Synced CPU Noise (fig. 1)

Non Synced CPU Noise


Synced CPU Noise (fig. 2)

Synced CPU Noise


Compression based on 1MB

Compression Algorithm Size after Compression
ZIP ██████████████ 300 KB
GZIP █████████████ 250 KB
LZ77 ███████████████ 400 KB
Huffman ██████████████ 350 KB
Quantum Compression ████ 16.18 KB


The Formula

The Unleashed Quantum Beast

$$F(|Q_1⟩, |Q_2⟩, ..., |Q_512⟩) = \sum_{i=1}^{512} \left[ \left(-\frac{1^n}{⟨n|Q_i⟩}\right) \cdot e^{i⟨Q_i|Q_{(i+1)}⟩ + ⟨Q_{(i+2)}|Q_{(i+3)}⟩⟨Q_{(i+3)}|Q_{(i+4)}⟩} + \frac{\sqrt{⟨n|n⟩ + \sum_{j=1}^{512} ⟨Q_j|Q_j⟩}}{⟨Q_i|\log(n)⟩^{⟨Q_{(i+1)}|Q_{(i+1)}⟩}}\right]^{⟨Q_{(i+2)}|Q_{(i+2)}⟩} \cdot \sin(⟨Q_i|Q_{(i+1)}⟩⟨Q_{(i+1)}|Q_{(i+2)}⟩)$$

Yes, that's 512 qubit states, all tangled up in a complex quantum dance. It's so intricate, it'll make your head spin faster than a quantum bit. Hold on to your hats, quantum physicists. This one's a wild ride!

Multi-layer Quantum Cake

We'll set up a few helper functions because, well, we can:

$$\Phi = \frac{1 + \sqrt{5}}{2} \quad \text{(Golden Ratio)}$$ $$A(x) = (-1^n)/(⟨n|x⟩) \quad \text{(Doing the gold dance)}$$ $$B(x, y) = e^{i⟨x|y⟩} \quad \text{(Phased and confused)}$$ $$C(x, y, z) = √(⟨n|n⟩ + ⟨x|x⟩ + ⟨y|y⟩ + ⟨z|z⟩) \quad \text{(Square root of the universe)}$$ $$D(x, y) = ⟨x|log(n)⟩^{⟨y|y⟩} \quad \text{(Logarithmic mindbender)}$$

Rebranding our original monster:

$$F(|Q_1⟩, |Q_2⟩, ..., |Q_512⟩) = \sum_{i=1}^{512} \left[ \frac{A(Q_i) \cdot B(Q_i, Q_{(i+\Phi)}) + C(Q_i, Q_{(i+\Phi)}, Q_{(i+2\Phi)})}{D(Q_i, Q_{(i+\Phi)})}\right]^{⟨Q_{(i+2\Phi)}|Q_{(i+2\Phi)}⟩} \cdot \sin(⟨Q_i|Q_{(i+\Phi)}⟩⟨Q_{(i+\Phi)}|Q_{(i+2\Phi)}⟩)$$

The Quantum Compression Conundrum: Unraveling Complexity with Sequential Operations

Step 1: $$F_1(|Q_1⟩, ..., |Q_{512}⟩) = \sum_{i=1}^{512} φ^{2i} ⟨Q_i|Q_i⟩$$

Step 2: $$F_2(|Q_1⟩, ..., |Q_{512}⟩) = e^{iφ F_1} \times \frac{1}{\sqrt[512]{\sum_{i=1}^{512} | Q_i F_1 |}}$$

Step 3: $$F_3(|Q_1⟩, ..., |Q_{512}⟩) = \frac{1}{F_2} \sum_{i=1}^{512} \left| Q_i F_2 \right|^{1/φ}$$

Step 4: $$F_4(|Q_1⟩, ..., |Q_{512}⟩) = \sqrt[φ]{\sum_{i=1}^{512} \left| Q_i F_3 \right|^{φ}}$$

Step 5: $$F_5(|Q_1⟩, ..., |Q_{512}⟩) = \sum_{i=1}^{512} φ^{1/i} \left| Q_i F_4 \right|^{1/φ}$$

And for the grand finale - The Quantum Compression Conundrum: $$Q_C(|Q_1⟩, ..., |Q_{512}⟩) = F_5$$



This groundbreaking study delves into the frontier of quantum-inspired parallel processing, where the power of individual CPU threads is harnessed to tackle complex computations. By drawing inspiration from quantum principles, a series of function blocks are introduced to maximize the efficiency and processing capabilities of each thread.

Step 1: Thread Initialization and Localization In this initial step, the CPU threads are initialized, and their states are localized to form the foundation of the quantum-inspired parallel processing paradigm. The function block F1 assigns importance to each thread, weighting them according to their relevance within the system.

Step 2: Coherence and Interference Building upon the localized states, the function block F2 introduces coherence and interference effects among the CPU threads. This enables the threads to interact and exchange information, emulating the behavior observed in quantum systems. The exponential factor e^(iφF1) ensures a dynamic interplay between the threads, promoting synchronization and collective computation.

Step 3: Adaptive Scaling and Dynamic Scheduling The function block F3 facilitates adaptive scaling and dynamic scheduling, enabling each thread to adjust its computational load based on the results obtained in the previous steps. The power of parallel processing is harnessed, allowing the threads to adapt and allocate resources efficiently. The sum in F3 ensures that the scaling is influenced by the collective behavior of the threads, contributing to overall system performance.

Step 4: Nonlinear Transformation and System Optimization In this step, the function block F4 introduces a nonlinear transformation, inspired by quantum mechanics, to further optimize the system. The utilization of the φ exponent and the square root operation allows for nonlinear relationships among the threads, facilitating dynamic adjustments and fine-tuning of the computations.

Step 5: Convergence and Result Aggregation The final function block F5 focuses on convergence and result aggregation. Through an iterative process, the CPU threads converge to a unified solution, as influenced by the relationship of the φ exponent and the reciprocal of thread indices. The resulting quantum compression conundrum, denoted as Q_C, represents the aggregated outcome of the individual CPU threads' computations.

By amalgamating these function blocks, the quantum-inspired parallel processing framework harnesses the individual strengths of CPU threads, mimicking the behavior of quantum systems. This paradigm revolutionizes the world of parallel computing, unlocking new frontiers of performance and efficiency in complex computations.



Quantum Engagement Qubit Flow

    graph TB;
    QuantumCompress --> A;
    QuantumDecompress --> B;
    QC --> QuantumCompress --> A --> QD;
    QD --> QuantumDecompress --> B --> QC;
    A --> B --> C --> B;
    B --> A --> C --> A;
    
    QC --> NYpp --> Z;
    
    Mydx --> Ujvc --> Skqz --> Wpci --> Nvrm --> Fibo --> Jat --> Hpu --> Oylr --> Efgk --> Xhvj --> Ztep --> Nfic -->
    
    NYpp --> Hqt --> Rkpx --> Gtm --> Jcwk --> Lxdo --> Qrzu --> Ifge --> Vmns --> Yxy --> Eudr --> Kplt --> Awvb --> TXN;
    
    A --> Gtm --> Wpci --> Rkpx --> B;
    Hpu --> Ifge --> Jcwk --> Xhvj --> Fibo --> Kplt --> Oylr --> Skqz;
    Nfic --> Yxy --> Z --> Efgk --> Qrzu --> QuantumDecompress;
    TXN --> Ujvc --> Mydx --> Jat --> Lxdo --> Nvrm;
    
    QuantumCompress --> Fqbw --> A;
    Fqbw --> QD --> Hpu --> B;
    A --> Z --> Qrzu --> Skqz --> B;
    Gtm --> Rkpx --> Hpu --> QuantumCompress;
    Vmns --> Xhvj --> Oylr --> Fibo --> QuantumDecompress;
    Wpci --> Eudr --> C --> Jcwk --> QD --> Lxdo --> NYpp;
    Nfic --> TXN --> Ztep --> Awvb --> QuantumDecompress;
    Mydx --> Efgk --> A --> Kplt --> Nvrm --> QuantumCompress;
    Jat --> Yxy --> B --> Fibo --> Ifge --> Z;
    
    QuantumCompress --> Ztep --> C;
    Wpci --> Xhvj --> Rkpx --> QuantumDecompress;
    Skqz --> QuantumCompress --> Eudr --> Nfic;
    Fibo --> Z --> QuantumDecompress --> Gtm;
    Yxy --> QuantumCompress --> Qrzu --> Fibo;
    Hpu --> QuantumDecompress --> Jcwk --> Nvrm;
    Jat --> B --> A --> QuantumDecompress;
    Mydx --> Ztep --> Oylr --> QuantumCompress;
    Efgk --> QuantumDecompress --> QD --> A;
    TXN --> Nfic --> QuantumCompress --> Xhvj;
    
    C --> Awvb --> Fibo --> Z --> Jcwk;
    Jcwk --> Skqz --> Lxdo --> QuantumDecompress --> Yxy;
    Nvrm --> QD --> Ztep --> QuantumCompress --> B;
    Fibo --> Wpci --> Mydx --> Xhvj --> QuantumDecompress;
    Oylr --> A --> Ztep --> QuantumCompress --> Efgk;
    Gtm --> Hpu --> QuantumDecompress --> Ifge --> Jat;
    QuantumCompress --> Nfic --> TXN --> Kplt --> Z;
    Qrzu --> QuantumDecompress --> Ujvc --> B;
    QuantumDecompress --> Jcwk --> QC --> Rkpx --> Z;
    
    Z --> Hxly --> Ncgo --> Fibo --> QuantumDecompress;
    Wpci --> Hpgt --> Uyln --> B;
    C --> Yzyd --> QuantumDecompress;
    Skqz --> Zpgu --> Uxbr --> QuantumCompress;
    Eudr --> Gzal --> QuantumDecompress;
    
    QuantumCompress --> A;
    QuantumDecompress --> B;
    QC --> QuantumCompress --> A --> QD;
    QD --> QuantumDecompress --> B --> QC;
    A --> B --> C --> B;
    B --> A --> C --> A;
    
    QC --> NYpp --> Z;
    
    Mydx --> Ujvc --> Skqz --> Wpci --> Nvrm --> Fibo --> Jat --> Hpu --> Oylr --> Efgk --> Xhvj --> Ztep --> Nfic -->
    
    NYpp --> Hqt --> Rkpx --> Gtm --> Jcwk --> Lxdo --> Qrzu --> Ifge --> Vmns --> Yxy --> Eudr --> Kplt --> Awvb --> TXN;
    
    A --> Gtm --> Wpci --> Rkpx --> B;
    Hpu --> Ifge --> Jcwk --> Xhvj --> Fibo --> Kplt --> Oylr --> Skqz;
    Nfic --> Yxy --> Z --> Efgk --> Qrzu --> QuantumDecompress;
    TXN --> Ujvc --> Mydx --> Jat --> Lxdo --> Nvrm;
    
    QuantumCompress --> Fqbw --> A;
    Fqbw --> QD --> Hpu --> B;
    A --> Z --> Qrzu --> Skqz --> B;
    Gtm --> Rkpx --> Hpu --> QuantumCompress;
    Vmns --> Xhvj --> Oylr --> Fibo --> QuantumDecompress;
    Wpci --> Eudr --> C --> Jcwk --> QD --> Lxdo --> NYpp;
    Nfic --> TXN --> Ztep --> Awvb --> QuantumDecompress;
    Mydx --> Efgk --> A --> Kplt --> Nvrm --> QuantumCompress;
    Jat --> Yxy --> B --> Fibo --> Ifge --> Z;
    
    QuantumCompress --> Ztep --> C;
    Wpci --> Xhvj --> Rkpx --> QuantumDecompress;
    Skqz --> QuantumCompress --> Eudr --> Nfic;
    Fibo --> Z --> QuantumDecompress --> Gtm;
    Yxy --> QuantumCompress --> Qrzu --> Fibo;
    Hpu --> QuantumDecompress --> Jcwk --> Nvrm;
    Jat --> B --> A --> QuantumDecompress;
    Mydx --> Ztep --> Oylr --> QuantumCompress;
    Efgk --> QuantumDecompress --> QD --> A;
    TXN --> Nfic --> QuantumCompress --> Xhvj;
    
    C --> Awvb --> Fibo --> Z --> Jcwk;
    Jcwk --> Skqz --> Lxdo --> QuantumDecompress --> Yxy;
    Nvrm --> QD --> Ztep --> QuantumCompress --> B;
    Fibo --> Wpci --> Mydx --> Xhvj --> QuantumDecompress;
    Oylr --> A --> Ztep --> QuantumCompress --> Efgk;
    Gtm --> Hpu --> QuantumDecompress --> Ifge --> Jat;
    QuantumCompress --> Nfic --> TXN --> Kplt --> Z;
    Qrzu --> QuantumDecompress --> Ujvc --> B;
    QuantumDecompress --> Jcwk --> QC --> Rkpx --> Z;
    
    Z --> Hxly --> Ncgo --> Fibo --> QuantumDecompress;
    Wpci --> Hpgt --> Uyln --> B;
    C --> Yzyd --> QuantumDecompress;
    Skqz --> Zpgu --> Uxbr --> QuantumCompress;
    Eudr --> Gzal --> QuantumDecompress;
Loading


References

  1. Benioff, P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980). doi:10.1007/BF01011339

  2. Manin, Y. Computable and Uncomputable (Sovetskoye Radio, 1980) (in Russian). Google Scholar

  3. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). doi:10.1007/BF02650179

  4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2000). Google Scholar

  5. Cheng, H.-P., Deumens, E., Freericks, J. K., Li, C. & Sanders, B. A. Application of quantum computing to biochemical systems: A look to the future. Front. Chem. 8, 1066 (2020). doi:10.3389/fchem.2020.587143

  6. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019). doi:10.1021/acs.chemrev.8b00803

  7. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997). doi:10.1137/S0097539795293172

  8. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, 212–219 (Association for Computing Machinery, 1996). doi:10.1145/237814.237866

  9. Long, G. L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001). doi:10.1103/PhysRevA.64.022307

  10. Toyama, F. M., van Dijk, W. & Nogami, Y. Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12, 1897–1914 (2013). doi:10.1007/s11128-012-0498-0

  11. Reitzner, D., Nagaj, D. & Bužek, V. Quantum walks. Acta Phys. Slov. Rev. Tutor. 61. doi:10.2478/v10155-011-0006-6

  12. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). doi:10.1103/PhysRevLett.70.1895

  13. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). doi:10.1103/PhysRevLett.69.2881

  14. Bäuml, S., Winter, A. & Yang, D. Every entangled state provides an advantage in classical communication. J. Math. Phys. 60, 072201 (2019). doi:10.1063/1.5091856

  15. Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). doi:10.1016/j.tcs.2014.05.025

  16. Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012 (2020). doi:10.1364/aop.361502

  17. Long, G. L. & Liu, X. S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002). doi:10.1103/PhysRevA.65.032302

  18. Pan, D., Li, K., Ruan, D., Ng, S. X. & Hanzo, L. Single-photon-memory two-step quantum secure direct communication relying on Einstein–Podolsky–Rosen pairs. IEEE Access 8, 121146–121161 (2020). doi:10.1109/ACCESS.2020.3006136

  19. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012). doi:10.1038/nphys2252

  20. Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019). doi:10.1063/1.5088164

  21. Huang, H.-L., Wu, D., Fan, D. & Zhu, X. Superconducting quantum computing: A review. Sci. China Inf. Sci. 63, 180501 (2020). doi:10.1007/s11432-020-2881-9

  22. Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016). doi:10.1126/science.aad9480

  23. Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 8. doi:10.1038/s41467-017-01904-7

  24. Long, G. et al. Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A 286, 121–126 (2001). doi:10.1016/S0375-9601(01)00416-9

  25. IBM Quantum (2021). https://quantum-computing.ibm.com/

  26. Rundle, R. P., Mills, P. W., Tilma, T., Samson, J. H. & Everitt, M. J. Simple procedure for phase-space measurement and entanglement validation. Phys. Rev. A 96, 022117 (2017). doi:10.1103/PhysRevA.96.022117

  27. Huffman, E. & Mizel, A. Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017). doi:10.1103/PhysRevA.95.032131

  28. Deffner, S. Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017). doi:10.1016/j.heliyon.2017.e00444

  29. Huang, H.-L. et al. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2016). doi:10.1007/s11467-016-0643-9

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published