-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
32e954f
commit 352963d
Showing
1 changed file
with
372 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,372 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"This is a notebook to generate mel-spectrograms from a TTS model to be used in a Vocoder training." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%load_ext autoreload\n", | ||
"%autoreload 2\n", | ||
"import os\n", | ||
"import sys\n", | ||
"import torch\n", | ||
"import importlib\n", | ||
"import numpy as np\n", | ||
"from tqdm import tqdm as tqdm\n", | ||
"from torch.utils.data import DataLoader\n", | ||
"from TTS.tts.datasets.dataset import TTSDataset\n", | ||
"from TTS.tts.layers.losses import L1LossMasked\n", | ||
"from TTS.utils.audio import AudioProcessor\n", | ||
"from TTS.config import load_config\n", | ||
"from TTS.tts.utils.visual import plot_spectrogram\n", | ||
"from TTS.tts.utils.helpers import sequence_mask\n", | ||
"from TTS.tts.models import setup_model\n", | ||
"from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes\n", | ||
"\n", | ||
"%matplotlib inline\n", | ||
"\n", | ||
"import os\n", | ||
"os.environ['CUDA_VISIBLE_DEVICES']='2'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def set_filename(wav_path, out_path):\n", | ||
" wav_file = os.path.basename(wav_path)\n", | ||
" file_name = wav_file.split('.')[0]\n", | ||
" os.makedirs(os.path.join(out_path, \"quant\"), exist_ok=True)\n", | ||
" os.makedirs(os.path.join(out_path, \"mel\"), exist_ok=True)\n", | ||
" os.makedirs(os.path.join(out_path, \"wav_gl\"), exist_ok=True)\n", | ||
" wavq_path = os.path.join(out_path, \"quant\", file_name)\n", | ||
" mel_path = os.path.join(out_path, \"mel\", file_name)\n", | ||
" wav_path = os.path.join(out_path, \"wav_gl\", file_name)\n", | ||
" return file_name, wavq_path, mel_path, wav_path" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"OUT_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/\"\n", | ||
"DATA_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/\"\n", | ||
"DATASET = \"ljspeech\"\n", | ||
"METADATA_FILE = \"metadata.csv\"\n", | ||
"CONFIG_PATH = \"/home/ubuntu/.local/share/tts/tts_models--en--ljspeech--tacotron2-DDC_ph/config.json\"\n", | ||
"MODEL_FILE = \"/home/ubuntu/.local/share/tts/tts_models--en--ljspeech--tacotron2-DDC_ph/model_file.pth\"\n", | ||
"BATCH_SIZE = 32\n", | ||
"\n", | ||
"QUANTIZED_WAV = False\n", | ||
"QUANTIZE_BIT = None\n", | ||
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n", | ||
"\n", | ||
"use_cuda = torch.cuda.is_available()\n", | ||
"print(\" > CUDA enabled: \", use_cuda)\n", | ||
"\n", | ||
"C = load_config(CONFIG_PATH)\n", | ||
"C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n", | ||
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(C['r'])\n", | ||
"# if the vocabulary was passed, replace the default\n", | ||
"if 'characters' in C and C['characters']:\n", | ||
" symbols, phonemes = make_symbols(**C.characters)\n", | ||
"\n", | ||
"# load the model\n", | ||
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n", | ||
"# TODO: multiple speaker\n", | ||
"model = setup_model(C)\n", | ||
"model.load_checkpoint(C, MODEL_FILE, eval=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"preprocessor = importlib.import_module(\"TTS.tts.datasets.formatters\")\n", | ||
"preprocessor = getattr(preprocessor, DATASET.lower())\n", | ||
"meta_data = preprocessor(DATA_PATH, METADATA_FILE)\n", | ||
"dataset = TTSDataset(\n", | ||
" checkpoint[\"config\"][\"r\"],\n", | ||
" C.text_cleaner,\n", | ||
" False,\n", | ||
" ap,\n", | ||
" meta_data,\n", | ||
" characters=C.get('characters', None),\n", | ||
" use_phonemes=C.use_phonemes,\n", | ||
" phoneme_cache_path=C.phoneme_cache_path,\n", | ||
" enable_eos_bos=C.enable_eos_bos_chars,\n", | ||
")\n", | ||
"loader = DataLoader(\n", | ||
" dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False\n", | ||
")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Generate model outputs " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pickle\n", | ||
"\n", | ||
"file_idxs = []\n", | ||
"metadata = []\n", | ||
"losses = []\n", | ||
"postnet_losses = []\n", | ||
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n", | ||
"with torch.no_grad():\n", | ||
" for data in tqdm(loader):\n", | ||
" # setup input data\n", | ||
" text_input = data[0]\n", | ||
" text_lengths = data[1]\n", | ||
" linear_input = data[3]\n", | ||
" mel_input = data[4]\n", | ||
" mel_lengths = data[5]\n", | ||
" stop_targets = data[6]\n", | ||
" item_idx = data[7]\n", | ||
"\n", | ||
" # dispatch data to GPU\n", | ||
" if use_cuda:\n", | ||
" text_input = text_input.cuda()\n", | ||
" text_lengths = text_lengths.cuda()\n", | ||
" mel_input = mel_input.cuda()\n", | ||
" mel_lengths = mel_lengths.cuda()\n", | ||
"\n", | ||
" mask = sequence_mask(text_lengths)\n", | ||
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n", | ||
" \n", | ||
" # compute loss\n", | ||
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n", | ||
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n", | ||
" losses.append(loss.item())\n", | ||
" postnet_losses.append(loss_postnet.item())\n", | ||
"\n", | ||
" # compute mel specs from linear spec if model is Tacotron\n", | ||
" if C.model == \"Tacotron\":\n", | ||
" mel_specs = []\n", | ||
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n", | ||
" for b in range(postnet_outputs.shape[0]):\n", | ||
" postnet_output = postnet_outputs[b]\n", | ||
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n", | ||
" postnet_outputs = torch.stack(mel_specs)\n", | ||
" elif C.model == \"Tacotron2\":\n", | ||
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n", | ||
" alignments = alignments.detach().cpu().numpy()\n", | ||
"\n", | ||
" if not DRY_RUN:\n", | ||
" for idx in range(text_input.shape[0]):\n", | ||
" wav_file_path = item_idx[idx]\n", | ||
" wav = ap.load_wav(wav_file_path)\n", | ||
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n", | ||
" file_idxs.append(file_name)\n", | ||
"\n", | ||
" # quantize and save wav\n", | ||
" if QUANTIZED_WAV:\n", | ||
" wavq = ap.quantize(wav)\n", | ||
" np.save(wavq_path, wavq)\n", | ||
"\n", | ||
" # save TTS mel\n", | ||
" mel = postnet_outputs[idx]\n", | ||
" mel_length = mel_lengths[idx]\n", | ||
" mel = mel[:mel_length, :].T\n", | ||
" np.save(mel_path, mel)\n", | ||
"\n", | ||
" metadata.append([wav_file_path, mel_path])\n", | ||
"\n", | ||
" # for wavernn\n", | ||
" if not DRY_RUN:\n", | ||
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n", | ||
" \n", | ||
" # for pwgan\n", | ||
" with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n", | ||
" for data in metadata:\n", | ||
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n", | ||
"\n", | ||
" print(np.mean(losses))\n", | ||
" print(np.mean(postnet_losses))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# for pwgan\n", | ||
"with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n", | ||
" for data in metadata:\n", | ||
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Sanity Check" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"idx = 1\n", | ||
"ap.melspectrogram(ap.load_wav(item_idx[idx])).shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import soundfile as sf\n", | ||
"wav, sr = sf.read(item_idx[idx])\n", | ||
"mel_postnet = postnet_outputs[idx][:mel_lengths[idx], :]\n", | ||
"mel_decoder = mel_outputs[idx][:mel_lengths[idx], :].detach().cpu().numpy()\n", | ||
"mel_truth = ap.melspectrogram(wav)\n", | ||
"print(mel_truth.shape)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# plot posnet output\n", | ||
"print(mel_postnet[:mel_lengths[idx], :].shape)\n", | ||
"plot_spectrogram(mel_postnet, ap)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# plot decoder output\n", | ||
"print(mel_decoder.shape)\n", | ||
"plot_spectrogram(mel_decoder, ap)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# plot GT specgrogram\n", | ||
"print(mel_truth.shape)\n", | ||
"plot_spectrogram(mel_truth.T, ap)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# postnet, decoder diff\n", | ||
"from matplotlib import pylab as plt\n", | ||
"mel_diff = mel_decoder - mel_postnet\n", | ||
"plt.figure(figsize=(16, 10))\n", | ||
"plt.imshow(abs(mel_diff[:mel_lengths[idx],:]).T,aspect=\"auto\", origin=\"lower\");\n", | ||
"plt.colorbar()\n", | ||
"plt.tight_layout()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# PLOT GT SPECTROGRAM diff\n", | ||
"from matplotlib import pylab as plt\n", | ||
"mel_diff2 = mel_truth.T - mel_decoder\n", | ||
"plt.figure(figsize=(16, 10))\n", | ||
"plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n", | ||
"plt.colorbar()\n", | ||
"plt.tight_layout()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# PLOT GT SPECTROGRAM diff\n", | ||
"from matplotlib import pylab as plt\n", | ||
"mel = postnet_outputs[idx]\n", | ||
"mel_diff2 = mel_truth.T - mel[:mel_truth.shape[1]]\n", | ||
"plt.figure(figsize=(16, 10))\n", | ||
"plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n", | ||
"plt.colorbar()\n", | ||
"plt.tight_layout()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"interpreter": { | ||
"hash": "822ce188d9bce5372c4adbb11364eeb49293228c2224eb55307f4664778e7f56" | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3.9.7 64-bit ('base': conda)", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |