-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Move FreeVCConfig to TTS.vc.configs (like all other config classes)
- Loading branch information
Showing
2 changed files
with
278 additions
and
278 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,278 @@ | ||
from dataclasses import dataclass, field | ||
from typing import List | ||
from typing import List, Optional | ||
|
||
from coqpit import Coqpit | ||
|
||
from TTS.vc.configs.shared_configs import BaseVCConfig | ||
from TTS.vc.models.freevc import FreeVCArgs, FreeVCAudioConfig, FreeVCConfig | ||
|
||
|
||
@dataclass | ||
class FreeVCAudioConfig(Coqpit): | ||
"""Audio configuration | ||
Args: | ||
max_wav_value (float): | ||
The maximum value of the waveform. | ||
input_sample_rate (int): | ||
The sampling rate of the input waveform. | ||
output_sample_rate (int): | ||
The sampling rate of the output waveform. | ||
filter_length (int): | ||
The length of the filter. | ||
hop_length (int): | ||
The hop length. | ||
win_length (int): | ||
The window length. | ||
n_mel_channels (int): | ||
The number of mel channels. | ||
mel_fmin (float): | ||
The minimum frequency of the mel filterbank. | ||
mel_fmax (Optional[float]): | ||
The maximum frequency of the mel filterbank. | ||
""" | ||
|
||
max_wav_value: float = field(default=32768.0) | ||
input_sample_rate: int = field(default=16000) | ||
output_sample_rate: int = field(default=24000) | ||
filter_length: int = field(default=1280) | ||
hop_length: int = field(default=320) | ||
win_length: int = field(default=1280) | ||
n_mel_channels: int = field(default=80) | ||
mel_fmin: float = field(default=0.0) | ||
mel_fmax: Optional[float] = field(default=None) | ||
|
||
|
||
@dataclass | ||
class FreeVCArgs(Coqpit): | ||
"""FreeVC model arguments | ||
Args: | ||
spec_channels (int): | ||
The number of channels in the spectrogram. | ||
inter_channels (int): | ||
The number of channels in the intermediate layers. | ||
hidden_channels (int): | ||
The number of channels in the hidden layers. | ||
filter_channels (int): | ||
The number of channels in the filter layers. | ||
n_heads (int): | ||
The number of attention heads. | ||
n_layers (int): | ||
The number of layers. | ||
kernel_size (int): | ||
The size of the kernel. | ||
p_dropout (float): | ||
The dropout probability. | ||
resblock (str): | ||
The type of residual block. | ||
resblock_kernel_sizes (List[int]): | ||
The kernel sizes for the residual blocks. | ||
resblock_dilation_sizes (List[List[int]]): | ||
The dilation sizes for the residual blocks. | ||
upsample_rates (List[int]): | ||
The upsample rates. | ||
upsample_initial_channel (int): | ||
The number of channels in the initial upsample layer. | ||
upsample_kernel_sizes (List[int]): | ||
The kernel sizes for the upsample layers. | ||
n_layers_q (int): | ||
The number of layers in the quantization network. | ||
use_spectral_norm (bool): | ||
Whether to use spectral normalization. | ||
gin_channels (int): | ||
The number of channels in the global conditioning vector. | ||
ssl_dim (int): | ||
The dimension of the self-supervised learning embedding. | ||
use_spk (bool): | ||
Whether to use external speaker encoder. | ||
""" | ||
|
||
spec_channels: int = field(default=641) | ||
inter_channels: int = field(default=192) | ||
hidden_channels: int = field(default=192) | ||
filter_channels: int = field(default=768) | ||
n_heads: int = field(default=2) | ||
n_layers: int = field(default=6) | ||
kernel_size: int = field(default=3) | ||
p_dropout: float = field(default=0.1) | ||
resblock: str = field(default="1") | ||
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11]) | ||
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) | ||
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2]) | ||
upsample_initial_channel: int = field(default=512) | ||
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) | ||
n_layers_q: int = field(default=3) | ||
use_spectral_norm: bool = field(default=False) | ||
gin_channels: int = field(default=256) | ||
ssl_dim: int = field(default=1024) | ||
use_spk: bool = field(default=False) | ||
num_spks: int = field(default=0) | ||
segment_size: int = field(default=8960) | ||
|
||
|
||
@dataclass | ||
class FreeVCConfig(BaseVCConfig): | ||
"""Defines parameters for FreeVC End2End TTS model. | ||
Args: | ||
model (str): | ||
Model name. Do not change unless you know what you are doing. | ||
model_args (FreeVCArgs): | ||
Model architecture arguments. Defaults to `FreeVCArgs()`. | ||
audio (FreeVCAudioConfig): | ||
Audio processing configuration. Defaults to `FreeVCAudioConfig()`. | ||
grad_clip (List): | ||
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. | ||
lr_gen (float): | ||
Initial learning rate for the generator. Defaults to 0.0002. | ||
lr_disc (float): | ||
Initial learning rate for the discriminator. Defaults to 0.0002. | ||
lr_scheduler_gen (str): | ||
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to | ||
`ExponentialLR`. | ||
lr_scheduler_gen_params (dict): | ||
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. | ||
lr_scheduler_disc (str): | ||
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to | ||
`ExponentialLR`. | ||
lr_scheduler_disc_params (dict): | ||
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. | ||
scheduler_after_epoch (bool): | ||
If true, step the schedulers after each epoch else after each step. Defaults to `False`. | ||
optimizer (str): | ||
Name of the optimizer to use with both the generator and the discriminator networks. One of the | ||
`torch.optim.*`. Defaults to `AdamW`. | ||
kl_loss_alpha (float): | ||
Loss weight for KL loss. Defaults to 1.0. | ||
disc_loss_alpha (float): | ||
Loss weight for the discriminator loss. Defaults to 1.0. | ||
gen_loss_alpha (float): | ||
Loss weight for the generator loss. Defaults to 1.0. | ||
feat_loss_alpha (float): | ||
Loss weight for the feature matching loss. Defaults to 1.0. | ||
mel_loss_alpha (float): | ||
Loss weight for the mel loss. Defaults to 45.0. | ||
return_wav (bool): | ||
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. | ||
compute_linear_spec (bool): | ||
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. | ||
use_weighted_sampler (bool): | ||
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. | ||
weighted_sampler_attrs (dict): | ||
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities | ||
by overweighting `root_path` by 2.0. Defaults to `{}`. | ||
weighted_sampler_multipliers (dict): | ||
Weight each unique value of a key returned by the formatter for weighted sampling. | ||
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. | ||
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. | ||
r (int): | ||
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. | ||
add_blank (bool): | ||
If true, a blank token is added in between every character. Defaults to `True`. | ||
test_sentences (List[List]): | ||
List of sentences with speaker and language information to be used for testing. | ||
language_ids_file (str): | ||
Path to the language ids file. | ||
use_language_embedding (bool): | ||
If true, language embedding is used. Defaults to `False`. | ||
Note: | ||
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. | ||
Example: | ||
>>> from TTS.vc.configs.freevc_config import FreeVCConfig | ||
>>> config = FreeVCConfig() | ||
""" | ||
|
||
model: str = "freevc" | ||
# model specific params | ||
model_args: FreeVCArgs = field(default_factory=FreeVCArgs) | ||
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig) | ||
|
||
# optimizer | ||
# TODO with training support | ||
|
||
# loss params | ||
# TODO with training support | ||
|
||
# data loader params | ||
return_wav: bool = True | ||
compute_linear_spec: bool = True | ||
|
||
# sampler params | ||
use_weighted_sampler: bool = False # TODO: move it to the base config | ||
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) | ||
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) | ||
|
||
# overrides | ||
r: int = 1 # DO NOT CHANGE | ||
add_blank: bool = True | ||
|
||
# multi-speaker settings | ||
# use speaker embedding layer | ||
num_speakers: int = 0 | ||
speakers_file: str = None | ||
speaker_embedding_channels: int = 256 | ||
|
||
# use d-vectors | ||
use_d_vector_file: bool = False | ||
d_vector_file: List[str] = None | ||
d_vector_dim: int = None | ||
|
||
def __post_init__(self): | ||
for key, val in self.model_args.items(): | ||
if hasattr(self, key): | ||
self[key] = val |
Oops, something went wrong.