-
Notifications
You must be signed in to change notification settings - Fork 4.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
187 additions
and
190 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,191 +1,188 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"source": [ | ||
"This notebook is to test attention performance of a TTS model on a list of sentences taken from DeepVoice paper.\n", | ||
"### Features of this notebook\n", | ||
"- You can see visually how your model performs on each sentence and try to dicern common problems.\n", | ||
"- At the end, final attention score would be printed showing the ultimate performace of your model. You can use this value to perform model selection.\n", | ||
"- You can change the list of sentences byt providing a different sentence file." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false", | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"%load_ext autoreload\n", | ||
"%autoreload 2\n", | ||
"import os, sys\n", | ||
"import torch \n", | ||
"import time\n", | ||
"import numpy as np\n", | ||
"from matplotlib import pylab as plt\n", | ||
"\n", | ||
"%pylab inline\n", | ||
"plt.rcParams[\"figure.figsize\"] = (16,5)\n", | ||
"\n", | ||
"import librosa\n", | ||
"import librosa.display\n", | ||
"\n", | ||
"from TTS.tts.layers import *\n", | ||
"from TTS.utils.audio import AudioProcessor | ||
|
||
\n", | ||
"from TTS.tts.utils.generic_utils import setup_model\n", | ||
"from TTS.tts.utils.io import load_config\n", | ||
"from TTS.tts.utils.text import text_to_sequence\n", | ||
"from TTS.tts.utils.synthesis import synthesis\n", | ||
"from TTS.tts.utils.visual import plot_alignment\n", | ||
"from TTS.tts.utils.measures import alignment_diagonal_score\n", | ||
"\n", | ||
"import IPython\n", | ||
"from IPython.display import Audio\n", | ||
"\n", | ||
"os.environ['CUDA_VISIBLE_DEVICES']='1'\n", | ||
"\n", | ||
"def tts(model, text, CONFIG, use_cuda, ap):\n", | ||
" t_1 = time.time()\n", | ||
" # run the model\n", | ||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, None, False, CONFIG.enable_eos_bos_chars, True)\n", | ||
" if CONFIG.model == \"Tacotron\" and not use_gl:\n", | ||
" mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", | ||
" # plotting\n", | ||
" attn_score = alignment_diagonal_score(torch.FloatTensor(alignment).unsqueeze(0))\n", | ||
" print(f\" > {text}\")\n", | ||
" IPython.display.display(IPython.display.Audio(waveform, rate=ap.sample_rate))\n", | ||
" fig = plot_alignment(alignment, fig_size=(8, 5))\n", | ||
" IPython.display.display(fig)\n", | ||
" #saving results\n", | ||
" os.makedirs(OUT_FOLDER, exist_ok=True)\n", | ||
" file_name = text[:200].replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", | ||
" out_path = os.path.join(OUT_FOLDER, file_name)\n", | ||
" ap.save_wav(waveform, out_path)\n", | ||
" return attn_score\n", | ||
"\n", | ||
"# Set constants\n", | ||
"ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-May-20-2020_12+29PM-1835628/'\n", | ||
"MODEL_PATH = ROOT_PATH + '/best_model.pth'\n", | ||
"CONFIG_PATH = ROOT_PATH + '/config.json'\n", | ||
"OUT_FOLDER = './hard_sentences/'\n", | ||
"CONFIG = load_config(CONFIG_PATH)\n", | ||
"SENTENCES_PATH = 'sentences.txt'\n", | ||
"use_cuda = True\n", | ||
"\n", | ||
"# Set some config fields manually for testing\n", | ||
"# CONFIG.windowing = False\n", | ||
"# CONFIG.prenet_dropout = False\n", | ||
"# CONFIG.separate_stopnet = True\n", | ||
"CONFIG.use_forward_attn = False\n", | ||
"# CONFIG.forward_attn_mask = True\n", | ||
"# CONFIG.stopnet = True" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# LOAD TTS MODEL\n", | ||
"from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes\n", | ||
"\n", | ||
"# multi speaker \n", | ||
"if CONFIG.use_speaker_embedding:\n", | ||
" speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n", | ||
" speakers_idx_to_id = {v: k for k, v in speakers.items()}\n", | ||
"else:\n", | ||
" speakers = []\n", | ||
" speaker_id = None\n", | ||
"\n", | ||
"# if the vocabulary was passed, replace the default\n", | ||
"if 'characters' in CONFIG.keys():\n", | ||
" symbols, phonemes = make_symbols(**CONFIG.characters)\n", | ||
"\n", | ||
"# load the model\n", | ||
"num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", | ||
"model = setup_model(num_chars, len(speakers), CONFIG)\n", | ||
"\n", | ||
"# load the audio processor\n", | ||
"ap = AudioProcessor(**CONFIG.audio) \n", | ||
"\n", | ||
"\n", | ||
"# load model state\n", | ||
"if use_cuda:\n", | ||
" cp = torch.load(MODEL_PATH)\n", | ||
"else:\n", | ||
" cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", | ||
"\n", | ||
"# load the model\n", | ||
"model.load_state_dict(cp['model'])\n", | ||
"if use_cuda:\n", | ||
" model.cuda()\n", | ||
"model.eval()\n", | ||
"print(cp['step'])\n", | ||
"print(cp['r'])\n", | ||
"\n", | ||
"# set model stepsize\n", | ||
"if 'r' in cp:\n", | ||
" model.decoder.set_r(cp['r'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"model.decoder.max_decoder_steps=3000\n", | ||
"attn_scores = []\n", | ||
"with open(SENTENCES_PATH, 'r') as f:\n", | ||
" for text in f:\n", | ||
" attn_score = tts(model, text, CONFIG, use_cuda, ap)\n", | ||
" attn_scores.append(attn_score)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"np.mean(attn_scores)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} | ||
"cells": [{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"source": [ | ||
"This notebook is to test attention performance of a TTS model on a list of sentences taken from DeepVoice paper.\n", | ||
"### Features of this notebook\n", | ||
"- You can see visually how your model performs on each sentence and try to dicern common problems.\n", | ||
"- At the end, final attention score would be printed showing the ultimate performace of your model. You can use this value to perform model selection.\n", | ||
"- You can change the list of sentences byt providing a different sentence file." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false", | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"%load_ext autoreload\n", | ||
"%autoreload 2\n", | ||
"import os, sys\n", | ||
"import torch \n", | ||
"import time\n", | ||
"import numpy as np\n", | ||
"from matplotlib import pylab as plt\n", | ||
"\n", | ||
"%pylab inline\n", | ||
"plt.rcParams[\"figure.figsize\"] = (16,5)\n", | ||
"\n", | ||
"import librosa\n", | ||
"import librosa.display\n", | ||
"\n", | ||
"from TTS.tts.layers import *\n", | ||
"from TTS.utils.audio import AudioProcessor\n", | ||
"from TTS.tts.utils.generic_utils import setup_model\n", | ||
"from TTS.tts.utils.io import load_config\n", | ||
"from TTS.tts.utils.text import text_to_sequence\n", | ||
"from TTS.tts.utils.synthesis import synthesis\n", | ||
"from TTS.tts.utils.visual import plot_alignment\n", | ||
"from TTS.tts.utils.measures import alignment_diagonal_score\n", | ||
"\n", | ||
"import IPython\n", | ||
"from IPython.display import Audio\n", | ||
"\n", | ||
"os.environ['CUDA_VISIBLE_DEVICES']='1'\n", | ||
"\n", | ||
"def tts(model, text, CONFIG, use_cuda, ap):\n", | ||
" t_1 = time.time()\n", | ||
" # run the model\n", | ||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, None, False, CONFIG.enable_eos_bos_chars, True)\n", | ||
" if CONFIG.model == \"Tacotron\" and not use_gl:\n", | ||
" mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", | ||
" # plotting\n", | ||
" attn_score = alignment_diagonal_score(torch.FloatTensor(alignment).unsqueeze(0))\n", | ||
" print(f\" > {text}\")\n", | ||
" IPython.display.display(IPython.display.Audio(waveform, rate=ap.sample_rate))\n", | ||
" fig = plot_alignment(alignment, fig_size=(8, 5))\n", | ||
" IPython.display.display(fig)\n", | ||
" #saving results\n", | ||
" os.makedirs(OUT_FOLDER, exist_ok=True)\n", | ||
" file_name = text[:200].replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", | ||
" out_path = os.path.join(OUT_FOLDER, file_name)\n", | ||
" ap.save_wav(waveform, out_path)\n", | ||
" return attn_score\n", | ||
"\n", | ||
"# Set constants\n", | ||
"ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-May-20-2020_12+29PM-1835628/'\n", | ||
"MODEL_PATH = ROOT_PATH + '/best_model.pth'\n", | ||
"CONFIG_PATH = ROOT_PATH + '/config.json'\n", | ||
"OUT_FOLDER = './hard_sentences/'\n", | ||
"CONFIG = load_config(CONFIG_PATH)\n", | ||
"SENTENCES_PATH = 'sentences.txt'\n", | ||
"use_cuda = True\n", | ||
"\n", | ||
"# Set some config fields manually for testing\n", | ||
"# CONFIG.windowing = False\n", | ||
"# CONFIG.prenet_dropout = False\n", | ||
"# CONFIG.separate_stopnet = True\n", | ||
"CONFIG.use_forward_attn = False\n", | ||
"# CONFIG.forward_attn_mask = True\n", | ||
"# CONFIG.stopnet = True" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# LOAD TTS MODEL\n", | ||
"from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes\n", | ||
"\n", | ||
"# multi speaker \n", | ||
"if CONFIG.use_speaker_embedding:\n", | ||
" speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n", | ||
" speakers_idx_to_id = {v: k for k, v in speakers.items()}\n", | ||
"else:\n", | ||
" speakers = []\n", | ||
" speaker_id = None\n", | ||
"\n", | ||
"# if the vocabulary was passed, replace the default\n", | ||
"if 'characters' in CONFIG.keys():\n", | ||
" symbols, phonemes = make_symbols(**CONFIG.characters)\n", | ||
"\n", | ||
"# load the model\n", | ||
"num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", | ||
"model = setup_model(num_chars, len(speakers), CONFIG)\n", | ||
"\n", | ||
"# load the audio processor\n", | ||
"ap = AudioProcessor(**CONFIG.audio) \n", | ||
"\n", | ||
"\n", | ||
"# load model state\n", | ||
"if use_cuda:\n", | ||
" cp = torch.load(MODEL_PATH)\n", | ||
"else:\n", | ||
" cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", | ||
"\n", | ||
"# load the model\n", | ||
"model.load_state_dict(cp['model'])\n", | ||
"if use_cuda:\n", | ||
" model.cuda()\n", | ||
"model.eval()\n", | ||
"print(cp['step'])\n", | ||
"print(cp['r'])\n", | ||
"\n", | ||
"# set model stepsize\n", | ||
"if 'r' in cp:\n", | ||
" model.decoder.set_r(cp['r'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"model.decoder.max_decoder_steps=3000\n", | ||
"attn_scores = []\n", | ||
"with open(SENTENCES_PATH, 'r') as f:\n", | ||
" for text in f:\n", | ||
" attn_score = tts(model, text, CONFIG, use_cuda, ap)\n", | ||
" attn_scores.append(attn_score)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"Collapsed": "false" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"np.mean(attn_scores)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |