Skip to content

Commit

Permalink
Replace webrtcvad by silero-vad
Browse files Browse the repository at this point in the history
  • Loading branch information
Edresson committed Mar 23, 2022
1 parent 3af01cf commit ea53d6f
Show file tree
Hide file tree
Showing 3 changed files with 103 additions and 189 deletions.
75 changes: 32 additions & 43 deletions TTS/bin/remove_silence_using_vad.py
Original file line number Diff line number Diff line change
@@ -1,51 +1,24 @@
import argparse
import glob
import multiprocessing
import os
import pathlib

from tqdm.contrib.concurrent import process_map
from tqdm import tqdm
from TTS.utils.vad import get_vad_model_and_utils, remove_silence

from TTS.utils.vad import get_vad_speech_segments, read_wave, write_wave


def remove_silence(filepath):
output_path = filepath.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
def adjust_path_and_remove_silence(audio_path):
output_path = audio_path.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
# ignore if the file exists
if os.path.exists(output_path) and not args.force:
return
return output_path

# create all directory structure
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
# load wave
audio, sample_rate = read_wave(filepath)

# get speech segments
segments = get_vad_speech_segments(audio, sample_rate, aggressiveness=args.aggressiveness)
# remove the silence and save the audio
output_path = remove_silence(model_and_utils, audio_path, output_path, trim_just_beginning_and_end=args.trim_just_beginning_and_end, use_cuda=args.use_cuda)

segments = list(segments)
num_segments = len(segments)
flag = False
# create the output wave
if num_segments != 0:
for i, segment in reversed(list(enumerate(segments))):
if i >= 1:
if not flag:
concat_segment = segment
flag = True
else:
concat_segment = segment + concat_segment
else:
if flag:
segment = segment + concat_segment
# print("Saving: ", output_path)
write_wave(output_path, segment, sample_rate)
return
else:
print("> Just Copying the file to:", output_path)
# if fail to remove silence just write the file
write_wave(output_path, audio, sample_rate)
return
return output_path


def preprocess_audios():
Expand All @@ -54,17 +27,24 @@ def preprocess_audios():
if not args.force:
print("> Ignoring files that already exist in the output directory.")

if args.trim_just_beginning_and_end:
print("> Trimming just the beginning and the end with nonspeech parts.")
else:
print("> Trimming all nonspeech parts.")

if files:
# create threads
num_threads = multiprocessing.cpu_count()
process_map(remove_silence, files, max_workers=num_threads, chunksize=15)
# num_threads = multiprocessing.cpu_count()
# process_map(adjust_path_and_remove_silence, files, max_workers=num_threads, chunksize=15)
for f in tqdm(files):
adjust_path_and_remove_silence(f)
else:
print("> No files Found !")


if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="python remove_silence.py -i=VCTK-Corpus-bk/ -o=../VCTK-Corpus-removed-silence -g=wav48/*/*.wav -a=2"
description="python TTS/bin/remove_silence_using_vad.py -i=VCTK-Corpus/ -o=VCTK-Corpus-removed-silence/ -g=wav48_silence_trimmed/*/*_mic1.flac --trim_just_beginning_and_end True"
)
parser.add_argument("-i", "--input_dir", type=str, default="../VCTK-Corpus", help="Dataset root dir")
parser.add_argument(
Expand All @@ -79,11 +59,20 @@ def preprocess_audios():
help="path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav",
)
parser.add_argument(
"-a",
"--aggressiveness",
type=int,
default=2,
help="set its aggressiveness mode, which is an integer between 0 and 3. 0 is the least aggressive about filtering out non-speech, 3 is the most aggressive.",
"-t",
"--trim_just_beginning_and_end",
type=bool,
default=True,
help="If True this script will trim just the beginning and end nonspeech parts. If False all nonspeech parts will be trim. Default True",
)
parser.add_argument(
"-c",
"--use_cuda",
type=bool,
default=False,
help="If True use cuda",
)
args = parser.parse_args()
# load the model and utils
model_and_utils = get_vad_model_and_utils(use_cuda=args.use_cuda)
preprocess_audios()
215 changes: 71 additions & 144 deletions TTS/utils/vad.py
Original file line number Diff line number Diff line change
@@ -1,144 +1,71 @@
# This code is adpated from: https://github.com/wiseman/py-webrtcvad/blob/master/example.py
import collections
import contextlib
import wave

import webrtcvad


def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, "rb")) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate


def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, "wb")) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)


class Frame(object):
"""Represents a "frame" of audio data."""

def __init__(self, _bytes, timestamp, duration):
self.bytes = _bytes
self.timestamp = timestamp
self.duration = duration


def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset : offset + n], timestamp, duration)
timestamp += duration
offset += n


def vad_collector(sample_rate, frame_duration_ms, padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False

voiced_frames = []
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)

# sys.stdout.write('1' if is_speech else '0')
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, _ in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b"".join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield b"".join([f.bytes for f in voiced_frames])


def get_vad_speech_segments(audio, sample_rate, aggressiveness=2, padding_duration_ms=300):

vad = webrtcvad.Vad(int(aggressiveness))
frames = list(frame_generator(30, audio, sample_rate))
segments = vad_collector(sample_rate, 30, padding_duration_ms, vad, frames)

return segments
import torch
import torchaudio

def read_audio(path):
wav, sr = torchaudio.load(path)

if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)

return wav.squeeze(0), sr

def resample_wav(wav, sr, new_sr):
wav = wav.unsqueeze(0)
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=new_sr)
wav = transform(wav)
return wav.squeeze(0)

def map_timestamps_to_new_sr(vad_sr, new_sr, timestamps, just_begging_end=False):
factor = new_sr / vad_sr
new_timestamps = []
if just_begging_end:
# get just the start and end timestamps
new_dict = {'start': int(timestamps[0]['start']*factor), 'end': int(timestamps[-1]['end']*factor)}
new_timestamps.append(new_dict)
else:
for ts in timestamps:
# map to the new SR
new_dict = {'start': int(ts['start']*factor), 'end': int(ts['end']*factor)}
new_timestamps.append(new_dict)

return new_timestamps

def get_vad_model_and_utils(use_cuda=False):
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=True,
onnx=False)
if use_cuda:
model = model.cuda()

get_speech_timestamps, save_audio, _, _, collect_chunks = utils
return model, get_speech_timestamps, save_audio, collect_chunks

def remove_silence(model_and_utils, audio_path, out_path, vad_sample_rate=8000, trim_just_beginning_and_end=True, use_cuda=False):

# get the VAD model and utils functions
model, get_speech_timestamps, save_audio, collect_chunks = model_and_utils

# read ground truth wav and resample the audio for the VAD
wav, gt_sample_rate = read_audio(audio_path)

# if needed, resample the audio for the VAD model
if gt_sample_rate != vad_sample_rate:
wav_vad = resample_wav(wav, gt_sample_rate, vad_sample_rate)
else:
wav_vad = wav

if use_cuda:
wav_vad = wav_vad.cuda()

# get speech timestamps from full audio file
speech_timestamps = get_speech_timestamps(wav_vad, model, sampling_rate=vad_sample_rate, window_size_samples=768)

# map the current speech_timestamps to the sample rate of the ground truth audio
new_speech_timestamps = map_timestamps_to_new_sr(vad_sample_rate, gt_sample_rate, speech_timestamps, trim_just_beginning_and_end)

# save audio
save_audio(out_path,
collect_chunks(new_speech_timestamps, wav), sampling_rate=gt_sample_rate)

return out_path
2 changes: 0 additions & 2 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -34,5 +34,3 @@ mecab-python3==1.0.3
unidic-lite==1.0.8
# gruut+supported langs
gruut[cs,de,es,fr,it,nl,pt,ru,sv]==2.2.3
# others
webrtcvad # for VAD

0 comments on commit ea53d6f

Please sign in to comment.