Skip to content

Commit

Permalink
Upgrade and Optimize TTS Code in extractttsspectrogram.ipynb (#3012)
Browse files Browse the repository at this point in the history
  • Loading branch information
anupammaurya6767 authored Oct 2, 2023
1 parent 155c5fc commit f133b9d
Showing 1 changed file with 103 additions and 78 deletions.
181 changes: 103 additions & 78 deletions notebooks/ExtractTTSpectrogram.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,15 @@
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"import os\n",
"import sys\n",
"import torch\n",
"import importlib\n",
"import numpy as np\n",
"from tqdm import tqdm as tqdm\n",
"from tqdm import tqdm\n",
"from torch.utils.data import DataLoader\n",
"import soundfile as sf\n",
"import pickle\n",
"from TTS.tts.datasets.dataset import TTSDataset\n",
"from TTS.tts.layers.losses import L1LossMasked\n",
"from TTS.utils.audio import AudioProcessor\n",
Expand All @@ -33,8 +33,8 @@
"\n",
"%matplotlib inline\n",
"\n",
"import os\n",
"os.environ['CUDA_VISIBLE_DEVICES']='2'"
"# Configure CUDA visibility\n",
"os.environ['CUDA_VISIBLE_DEVICES'] = '2'"
]
},
{
Expand All @@ -43,6 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
"# Function to create directories and file names\n",
"def set_filename(wav_path, out_path):\n",
" wav_file = os.path.basename(wav_path)\n",
" file_name = wav_file.split('.')[0]\n",
Expand All @@ -61,6 +62,7 @@
"metadata": {},
"outputs": [],
"source": [
"# Paths and configurations\n",
"OUT_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/specs2/\"\n",
"DATA_PATH = \"/home/ubuntu/TTS/recipes/ljspeech/LJSpeech-1.1/\"\n",
"DATASET = \"ljspeech\"\n",
Expand All @@ -73,12 +75,15 @@
"QUANTIZE_BIT = None\n",
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
"\n",
"# Check CUDA availability\n",
"use_cuda = torch.cuda.is_available()\n",
"print(\" > CUDA enabled: \", use_cuda)\n",
"\n",
"# Load the configuration\n",
"C = load_config(CONFIG_PATH)\n",
"C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n",
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)"
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)\n",
"print(C['r'])"
]
},
{
Expand All @@ -87,14 +92,13 @@
"metadata": {},
"outputs": [],
"source": [
"print(C['r'])\n",
"# if the vocabulary was passed, replace the default\n",
"# If the vocabulary was passed, replace the default\n",
"if 'characters' in C and C['characters']:\n",
" symbols, phonemes = make_symbols(**C.characters)\n",
"\n",
"# load the model\n",
"# Load the model\n",
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
"# TODO: multiple speaker\n",
"# TODO: multiple speakers\n",
"model = setup_model(C)\n",
"model.load_checkpoint(C, MODEL_FILE, eval=True)"
]
Expand All @@ -105,11 +109,12 @@
"metadata": {},
"outputs": [],
"source": [
"# Load the preprocessor based on the dataset\n",
"preprocessor = importlib.import_module(\"TTS.tts.datasets.formatters\")\n",
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
"meta_data = preprocessor(DATA_PATH, METADATA_FILE)\n",
"dataset = TTSDataset(\n",
" checkpoint[\"config\"][\"r\"],\n",
" C,\n",
" C.text_cleaner,\n",
" False,\n",
" ap,\n",
Expand All @@ -124,6 +129,24 @@
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize lists for storing results\n",
"file_idxs = []\n",
"metadata = []\n",
"losses = []\n",
"postnet_losses = []\n",
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
"\n",
"# Create log file\n",
"log_file_path = os.path.join(OUT_PATH, \"log.txt\")\n",
"log_file = open(log_file_path, \"w\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand All @@ -137,83 +160,85 @@
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"file_idxs = []\n",
"metadata = []\n",
"losses = []\n",
"postnet_losses = []\n",
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
"# Start processing with a progress bar\n",
"with torch.no_grad():\n",
" for data in tqdm(loader):\n",
" # setup input data\n",
" text_input = data[0]\n",
" text_lengths = data[1]\n",
" linear_input = data[3]\n",
" mel_input = data[4]\n",
" mel_lengths = data[5]\n",
" stop_targets = data[6]\n",
" item_idx = data[7]\n",
" for data in tqdm(loader, desc=\"Processing\"):\n",
" try:\n",
" # setup input data\n",
" text_input, text_lengths, _, linear_input, mel_input, mel_lengths, stop_targets, item_idx = data\n",
"\n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
"\n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
" \n",
" # compute loss\n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
"\n",
" # compute mel specs from linear spec if model is Tacotron\n",
" if C.model == \"Tacotron\":\n",
" mel_specs = []\n",
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
" for b in range(postnet_outputs.shape[0]):\n",
" postnet_output = postnet_outputs[b]\n",
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
" postnet_outputs = torch.stack(mel_specs)\n",
" elif C.model == \"Tacotron2\":\n",
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
" alignments = alignments.detach().cpu().numpy()\n",
" # compute loss\n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
"\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
" # compute mel specs from linear spec if the model is Tacotron\n",
" if C.model == \"Tacotron\":\n",
" mel_specs = []\n",
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
" for b in range(postnet_outputs.shape[0]):\n",
" postnet_output = postnet_outputs[b]\n",
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
" postnet_outputs = torch.stack(mel_specs)\n",
" elif C.model == \"Tacotron2\":\n",
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
" alignments = alignments.detach().cpu().numpy()\n",
"\n",
" # quantize and save wav\n",
" if QUANTIZED_WAV:\n",
" wavq = ap.quantize(wav)\n",
" np.save(wavq_path, wavq)\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
"\n",
" # save TTS mel\n",
" mel = postnet_outputs[idx]\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
" # quantize and save wav\n",
" if QUANTIZED_WAV:\n",
" wavq = ap.quantize(wav)\n",
" np.save(wavq_path, wavq)\n",
"\n",
" metadata.append([wav_file_path, mel_path])\n",
" # save TTS mel\n",
" mel = postnet_outputs[idx]\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
"\n",
" # for wavernn\n",
" if not DRY_RUN:\n",
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
" \n",
" # for pwgan\n",
" with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
" for data in metadata:\n",
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
" metadata.append([wav_file_path, mel_path])\n",
"\n",
" except Exception as e:\n",
" log_file.write(f\"Error processing data: {str(e)}\\n\")\n",
"\n",
" # Calculate and log mean losses\n",
" mean_loss = np.mean(losses)\n",
" mean_postnet_loss = np.mean(postnet_losses)\n",
" log_file.write(f\"Mean Loss: {mean_loss}\\n\")\n",
" log_file.write(f\"Mean Postnet Loss: {mean_postnet_loss}\\n\")\n",
"\n",
"# Close the log file\n",
"log_file.close()\n",
"\n",
"# For wavernn\n",
"if not DRY_RUN:\n",
" pickle.dump(file_idxs, open(os.path.join(OUT_PATH, \"dataset_ids.pkl\"), \"wb\"))\n",
"\n",
"# For pwgan\n",
"with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
" for data in metadata:\n",
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
"\n",
" print(np.mean(losses))\n",
" print(np.mean(postnet_losses))"
"# Print mean losses\n",
"print(f\"Mean Loss: {mean_loss}\")\n",
"print(f\"Mean Postnet Loss: {mean_postnet_loss}\")"
]
},
{
Expand Down

0 comments on commit f133b9d

Please sign in to comment.