Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move FreeVCConfig to TTS.vc.configs (like all other config classes) #3126

Merged
merged 1 commit into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
277 changes: 275 additions & 2 deletions TTS/vc/configs/freevc_config.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,278 @@
from dataclasses import dataclass, field
from typing import List
from typing import List, Optional

from coqpit import Coqpit

from TTS.vc.configs.shared_configs import BaseVCConfig
from TTS.vc.models.freevc import FreeVCArgs, FreeVCAudioConfig, FreeVCConfig


@dataclass
class FreeVCAudioConfig(Coqpit):
"""Audio configuration

Args:
max_wav_value (float):
The maximum value of the waveform.

input_sample_rate (int):
The sampling rate of the input waveform.

output_sample_rate (int):
The sampling rate of the output waveform.

filter_length (int):
The length of the filter.

hop_length (int):
The hop length.

win_length (int):
The window length.

n_mel_channels (int):
The number of mel channels.

mel_fmin (float):
The minimum frequency of the mel filterbank.

mel_fmax (Optional[float]):
The maximum frequency of the mel filterbank.
"""

max_wav_value: float = field(default=32768.0)
input_sample_rate: int = field(default=16000)
output_sample_rate: int = field(default=24000)
filter_length: int = field(default=1280)
hop_length: int = field(default=320)
win_length: int = field(default=1280)
n_mel_channels: int = field(default=80)
mel_fmin: float = field(default=0.0)
mel_fmax: Optional[float] = field(default=None)


@dataclass
class FreeVCArgs(Coqpit):
"""FreeVC model arguments

Args:
spec_channels (int):
The number of channels in the spectrogram.

inter_channels (int):
The number of channels in the intermediate layers.

hidden_channels (int):
The number of channels in the hidden layers.

filter_channels (int):
The number of channels in the filter layers.

n_heads (int):
The number of attention heads.

n_layers (int):
The number of layers.

kernel_size (int):
The size of the kernel.

p_dropout (float):
The dropout probability.

resblock (str):
The type of residual block.

resblock_kernel_sizes (List[int]):
The kernel sizes for the residual blocks.

resblock_dilation_sizes (List[List[int]]):
The dilation sizes for the residual blocks.

upsample_rates (List[int]):
The upsample rates.

upsample_initial_channel (int):
The number of channels in the initial upsample layer.

upsample_kernel_sizes (List[int]):
The kernel sizes for the upsample layers.

n_layers_q (int):
The number of layers in the quantization network.

use_spectral_norm (bool):
Whether to use spectral normalization.

gin_channels (int):
The number of channels in the global conditioning vector.

ssl_dim (int):
The dimension of the self-supervised learning embedding.

use_spk (bool):
Whether to use external speaker encoder.
"""

spec_channels: int = field(default=641)
inter_channels: int = field(default=192)
hidden_channels: int = field(default=192)
filter_channels: int = field(default=768)
n_heads: int = field(default=2)
n_layers: int = field(default=6)
kernel_size: int = field(default=3)
p_dropout: float = field(default=0.1)
resblock: str = field(default="1")
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
upsample_initial_channel: int = field(default=512)
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
n_layers_q: int = field(default=3)
use_spectral_norm: bool = field(default=False)
gin_channels: int = field(default=256)
ssl_dim: int = field(default=1024)
use_spk: bool = field(default=False)
num_spks: int = field(default=0)
segment_size: int = field(default=8960)


@dataclass
class FreeVCConfig(BaseVCConfig):
"""Defines parameters for FreeVC End2End TTS model.

Args:
model (str):
Model name. Do not change unless you know what you are doing.

model_args (FreeVCArgs):
Model architecture arguments. Defaults to `FreeVCArgs()`.

audio (FreeVCAudioConfig):
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.

grad_clip (List):
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.

lr_gen (float):
Initial learning rate for the generator. Defaults to 0.0002.

lr_disc (float):
Initial learning rate for the discriminator. Defaults to 0.0002.

lr_scheduler_gen (str):
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.

lr_scheduler_gen_params (dict):
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.

lr_scheduler_disc (str):
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.

lr_scheduler_disc_params (dict):
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.

scheduler_after_epoch (bool):
If true, step the schedulers after each epoch else after each step. Defaults to `False`.

optimizer (str):
Name of the optimizer to use with both the generator and the discriminator networks. One of the
`torch.optim.*`. Defaults to `AdamW`.

kl_loss_alpha (float):
Loss weight for KL loss. Defaults to 1.0.

disc_loss_alpha (float):
Loss weight for the discriminator loss. Defaults to 1.0.

gen_loss_alpha (float):
Loss weight for the generator loss. Defaults to 1.0.

feat_loss_alpha (float):
Loss weight for the feature matching loss. Defaults to 1.0.

mel_loss_alpha (float):
Loss weight for the mel loss. Defaults to 45.0.

return_wav (bool):
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.

compute_linear_spec (bool):
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.

use_weighted_sampler (bool):
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.

weighted_sampler_attrs (dict):
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
by overweighting `root_path` by 2.0. Defaults to `{}`.

weighted_sampler_multipliers (dict):
Weight each unique value of a key returned by the formatter for weighted sampling.
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.

r (int):
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.

add_blank (bool):
If true, a blank token is added in between every character. Defaults to `True`.

test_sentences (List[List]):
List of sentences with speaker and language information to be used for testing.

language_ids_file (str):
Path to the language ids file.

use_language_embedding (bool):
If true, language embedding is used. Defaults to `False`.

Note:
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.

Example:

>>> from TTS.vc.configs.freevc_config import FreeVCConfig
>>> config = FreeVCConfig()
"""

model: str = "freevc"
# model specific params
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)

# optimizer
# TODO with training support

# loss params
# TODO with training support

# data loader params
return_wav: bool = True
compute_linear_spec: bool = True

# sampler params
use_weighted_sampler: bool = False # TODO: move it to the base config
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})

# overrides
r: int = 1 # DO NOT CHANGE
add_blank: bool = True

# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
speakers_file: str = None
speaker_embedding_channels: int = 256

# use d-vectors
use_d_vector_file: bool = False
d_vector_file: List[str] = None
d_vector_dim: int = None

def __post_init__(self):
for key, val in self.model_args.items():
if hasattr(self, key):
self[key] = val
Loading
Loading