-
-
Notifications
You must be signed in to change notification settings - Fork 100
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding
.permute_axes::<...>()
method for 2d, 3d, and 4d tensors (#169)
See #108 for more details
- Loading branch information
1 parent
2d42a8e
commit 85b649e
Showing
4 changed files
with
610 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,273 @@ | ||
//! Permutation implementation is basically just looping over | ||
//! all the elements and reordering them. | ||
//! | ||
//! This implementation heavily relies on macros to expand on the | ||
//! possible versions. In the future it may be possible to refactor | ||
//! this to use const generics, however the attempt at this on | ||
//! initial implementation was too verbose and hard to understand. | ||
//! | ||
//! - `permutations!` expands all the possible permutations of axes | ||
//! - `impl_permute!` does the actual implementation. | ||
//! - [permuted_loop2], [permuted_loop3], [permuted_loop4], and [const_idx] | ||
//! are used to do the permutations. | ||
//! | ||
//! [permuted_loop2] takes in a function that receives the unpermuted set of | ||
//! indices, and the permuted set of indices. This type of function enables | ||
//! only specifying the looping & indexing logic once. Both | ||
//! [DevicePermute2D::permute] and [DevicePermute2D::inverse_permute] share | ||
//! this looping logic, but only differ in what they do with the indices. | ||
use super::Cpu; | ||
|
||
/// Permutes axes of `A` resulting in `B`. | ||
pub trait DevicePermute2D<A, B, const I: isize, const J: isize> { | ||
fn permute(a: &A, b: &mut B); | ||
fn inverse_permute(a: &mut A, b: &B); | ||
} | ||
|
||
/// Permutes axes of `A` resulting in `B`. | ||
pub trait DevicePermute3D<A, B, const I: isize, const J: isize, const K: isize> { | ||
fn permute(a: &A, b: &mut B); | ||
fn inverse_permute(a: &mut A, b: &B); | ||
} | ||
|
||
/// Permutes axes of `A` resulting in `B`. | ||
pub trait DevicePermute4D<A, B, const I: isize, const J: isize, const K: isize, const L: isize> { | ||
fn permute(a: &A, b: &mut B); | ||
fn inverse_permute(a: &mut A, b: &B); | ||
} | ||
|
||
/// Expands to the const generic for a specific axis. This is purely convention only. | ||
#[rustfmt::skip] | ||
macro_rules! axis { (0) => { M }; (1) => { N }; (2) => { O }; (3) => { P }; } | ||
|
||
/// Expands to a array type using the axes passed in. | ||
/// E.g. `array!(2, 0, 1)` expands to `[[[f32; N]; M]; O]` | ||
#[rustfmt::skip] | ||
macro_rules! array { | ||
($Ax0:tt) => { [f32; axis!($Ax0)] }; | ||
($Ax0:tt, $Ax1:tt) => { [[f32; axis!($Ax1)]; axis!($Ax0)] }; | ||
($Ax0:tt, $Ax1:tt, $Ax2:tt) => { [[[f32; axis!($Ax2)]; axis!($Ax1)]; axis!($Ax0)] }; | ||
($Ax0:tt, $Ax1:tt, $Ax2:tt, $Ax3:tt) => { [[[[f32; axis!($Ax3)]; axis!($Ax2)]; axis!($Ax1)]; axis!($Ax0)] }; | ||
} | ||
|
||
/// Concrete implementations for the permute and inverse permute functions. | ||
#[rustfmt::skip] | ||
macro_rules! impl_permute { | ||
($Ax0:tt, $Ax1:tt) => { | ||
impl<const M: usize, const N: usize> | ||
DevicePermute2D<array!(0, 1), array!($Ax0, $Ax1), $Ax0, $Ax1> for Cpu | ||
{ | ||
fn permute(a: &array!(0, 1), b: &mut array!($Ax0, $Ax1)) { | ||
permuted_loop2::<M, N, $Ax0, $Ax1, _>(&mut |[m, n], [i, j]| { | ||
b[i][j] = a[m][n]; | ||
}); | ||
} | ||
fn inverse_permute(a: &mut array!(0, 1), b: &array!($Ax0, $Ax1)) { | ||
permuted_loop2::<M, N, $Ax0, $Ax1, _>(&mut |[m, n], [i, j]| { | ||
a[m][n] = b[i][j]; | ||
}); | ||
} | ||
} | ||
}; | ||
($Ax0:tt, $Ax1:tt, $Ax2:tt) => { | ||
impl<const M: usize, const N: usize, const O: usize> | ||
DevicePermute3D<array!(0, 1, 2), array!($Ax0, $Ax1, $Ax2), $Ax0, $Ax1, $Ax2> for Cpu | ||
{ | ||
fn permute(a: &array!(0, 1, 2), b: &mut array!($Ax0, $Ax1, $Ax2)) { | ||
permuted_loop3::<M, N, O, $Ax0, $Ax1, $Ax2, _>(&mut |[m, n, o], [i, j, k]| { | ||
b[i][j][k] = a[m][n][o]; | ||
}); | ||
} | ||
fn inverse_permute(a: &mut array!(0, 1, 2), b: &array!($Ax0, $Ax1, $Ax2)) { | ||
permuted_loop3::<M, N, O, $Ax0, $Ax1, $Ax2, _>(&mut |[m, n, o], [i, j, k]| { | ||
a[m][n][o] = b[i][j][k]; | ||
}); | ||
} | ||
} | ||
}; | ||
($Ax0:tt, $Ax1:tt, $Ax2:tt, $Ax3:tt) => { | ||
impl<const M: usize, const N: usize, const O: usize, const P: usize> | ||
DevicePermute4D<array!(0,1,2,3), array!($Ax0,$Ax1,$Ax2,$Ax3), $Ax0,$Ax1,$Ax2,$Ax3> for Cpu | ||
{ | ||
fn permute(a: &array!(0, 1, 2, 3), b: &mut array!($Ax0, $Ax1, $Ax2, $Ax3)) { | ||
permuted_loop4::<M, N, O, P, $Ax0, $Ax1, $Ax2, $Ax3, _>( | ||
&mut |[m, n, o, p], [i, j, k, l]| { | ||
b[i][j][k][l] = a[m][n][o][p]; | ||
}, | ||
); | ||
} | ||
fn inverse_permute(a: &mut array!(0, 1, 2, 3), b: &array!($Ax0, $Ax1, $Ax2, $Ax3)) { | ||
permuted_loop4::<M, N, O, P, $Ax0, $Ax1, $Ax2, $Ax3, _>( | ||
&mut |[m, n, o, p], [i, j, k, l]| { | ||
a[m][n][o][p] = b[i][j][k][l]; | ||
}, | ||
); | ||
} | ||
} | ||
}; | ||
} | ||
|
||
/// Index into `indices` using the const `I`. If `I` < 0 then use `N - I`. | ||
fn const_idx<const I: isize, const N: usize>(indices: &[usize; N]) -> usize { | ||
if I < 0 { | ||
indices[(N as isize - I) as usize] | ||
} else { | ||
indices[I as usize] | ||
} | ||
} | ||
|
||
/// Apply a function `f` to two sets of 2d indices. | ||
fn permuted_loop2<const M: usize, const N: usize, const I: isize, const J: isize, F>(f: &mut F) | ||
where | ||
F: FnMut([usize; 2], [usize; 2]), | ||
{ | ||
for m in 0..M { | ||
for n in 0..N { | ||
let indices = [m, n]; | ||
let i = const_idx::<I, 2>(&indices); | ||
let j = const_idx::<J, 2>(&indices); | ||
f(indices, [i, j]); | ||
} | ||
} | ||
} | ||
|
||
/// Apply a function `f` to two sets of 2d indices. | ||
fn permuted_loop3< | ||
const M: usize, | ||
const N: usize, | ||
const O: usize, | ||
const I: isize, | ||
const J: isize, | ||
const K: isize, | ||
F: FnMut([usize; 3], [usize; 3]), | ||
>( | ||
f: &mut F, | ||
) { | ||
for m in 0..M { | ||
for n in 0..N { | ||
for o in 0..O { | ||
let indices = [m, n, o]; | ||
let i = const_idx::<I, 3>(&indices); | ||
let j = const_idx::<J, 3>(&indices); | ||
let k = const_idx::<K, 3>(&indices); | ||
f(indices, [i, j, k]); | ||
} | ||
} | ||
} | ||
} | ||
|
||
/// Apply a function `f` to two sets of 2d indices. | ||
fn permuted_loop4< | ||
const M: usize, | ||
const N: usize, | ||
const O: usize, | ||
const P: usize, | ||
const I: isize, | ||
const J: isize, | ||
const K: isize, | ||
const L: isize, | ||
F: FnMut([usize; 4], [usize; 4]), | ||
>( | ||
f: &mut F, | ||
) { | ||
for m in 0..M { | ||
for n in 0..N { | ||
for o in 0..O { | ||
for p in 0..P { | ||
let indices = [m, n, o, p]; | ||
let i = const_idx::<I, 4>(&indices); | ||
let j = const_idx::<J, 4>(&indices); | ||
let k = const_idx::<K, 4>(&indices); | ||
let l = const_idx::<L, 4>(&indices); | ||
f(indices, [i, j, k, l]); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
/// Expand out all the possible permutations for 2-4d | ||
macro_rules! permutations { | ||
([$Ax0:tt, $Ax1:tt]) => { | ||
impl_permute!($Ax0, $Ax1); | ||
impl_permute!($Ax1, $Ax0); | ||
}; | ||
|
||
([$Ax0:tt, $Ax1:tt, $Ax2:tt]) => { | ||
permutations!($Ax0, [$Ax1, $Ax2]); | ||
permutations!($Ax1, [$Ax0, $Ax2]); | ||
permutations!($Ax2, [$Ax0, $Ax1]); | ||
}; | ||
($Ax0:tt, [$Ax1:tt, $Ax2:tt]) => { | ||
impl_permute!($Ax0, $Ax1, $Ax2); | ||
impl_permute!($Ax0, $Ax2, $Ax1); | ||
}; | ||
|
||
([$Ax0:tt, $Ax1:tt, $Ax2:tt, $Ax3:tt]) => { | ||
permutations!($Ax0, [$Ax1, $Ax2, $Ax3]); | ||
permutations!($Ax1, [$Ax0, $Ax2, $Ax3]); | ||
permutations!($Ax2, [$Ax0, $Ax1, $Ax3]); | ||
permutations!($Ax3, [$Ax0, $Ax1, $Ax2]); | ||
}; | ||
($Ax0:tt, [$Ax1:tt, $Ax2:tt, $Ax3:tt]) => { | ||
permutations!($Ax0, $Ax1, [$Ax2, $Ax3]); | ||
permutations!($Ax0, $Ax2, [$Ax1, $Ax3]); | ||
permutations!($Ax0, $Ax3, [$Ax1, $Ax2]); | ||
}; | ||
($Ax0:tt, $Ax1:tt, [$Ax2:tt, $Ax3:tt]) => { | ||
impl_permute!($Ax0, $Ax1, $Ax2, $Ax3); | ||
impl_permute!($Ax0, $Ax1, $Ax3, $Ax2); | ||
}; | ||
} | ||
|
||
permutations!([0, 1]); | ||
permutations!([0, 1, 2]); | ||
permutations!([0, 1, 2, 3]); | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::prelude::FillElements; | ||
use rand::{thread_rng, Rng}; | ||
|
||
#[test] | ||
fn test_2d_permute() { | ||
let a = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]; | ||
let mut b = [[0.0; 2]; 3]; | ||
<Cpu as DevicePermute2D<_, _, 1, 0>>::permute(&a, &mut b); | ||
assert_eq!(b, [[1.0, 4.0], [2.0, 5.0], [3.0, 6.0]]); | ||
|
||
let mut c = [[0.0; 3]; 2]; | ||
<Cpu as DevicePermute2D<_, _, 1, 0>>::inverse_permute(&mut c, &b); | ||
assert_eq!(a, c); | ||
} | ||
|
||
#[test] | ||
fn test_3d_permute() { | ||
let a = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]]; | ||
let mut b = [[[0.0; 1]; 2]; 3]; | ||
<Cpu as DevicePermute3D<_, _, 2, 1, 0>>::permute(&a, &mut b); | ||
assert_eq!(b, [[[1.0], [4.0]], [[2.0], [5.0]], [[3.0], [6.0]]]); | ||
|
||
let mut c = [[[0.0; 3]; 2]; 1]; | ||
<Cpu as DevicePermute3D<_, _, 2, 1, 0>>::inverse_permute(&mut c, &b); | ||
assert_eq!(a, c); | ||
} | ||
|
||
#[test] | ||
fn test_4d_permute() { | ||
let mut rng = thread_rng(); | ||
let mut a = [[[[0.0; 9]; 7]; 5]; 3]; | ||
Cpu::fill(&mut a, &mut |v| *v = rng.gen()); | ||
|
||
let mut b = [[[[0.0; 3]; 5]; 9]; 7]; | ||
<Cpu as DevicePermute4D<_, _, 2, 3, 1, 0>>::permute(&a, &mut b); | ||
assert_ne!(b, [[[[0.0; 3]; 5]; 9]; 7]); | ||
|
||
let mut c = [[[[0.0; 9]; 7]; 5]; 3]; | ||
<Cpu as DevicePermute4D<_, _, 2, 3, 1, 0>>::inverse_permute(&mut c, &b); | ||
|
||
assert_eq!(a, c); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.