Skip to content

Commit

Permalink
Sweeps mean, std, var (tenstorrent#14793)
Browse files Browse the repository at this point in the history
* tenstorrent#11512: Add mean, std, var sweeps

* tenstorrent#11512: Fix run config typo
  • Loading branch information
npetrovic-tenstorrent authored and Christopher Taylor committed Nov 12, 2024
1 parent 44f846a commit a2b9e1a
Show file tree
Hide file tree
Showing 4 changed files with 240 additions and 0 deletions.
3 changes: 3 additions & 0 deletions .github/workflows/ttnn-run-sweeps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -267,6 +267,9 @@ on:
- reduction.argmax.argmax
- reduction.prod
- reduction.sum
- reduction.var.var
- reduction.std.std
- reduction.mean.mean
- matmul.full.matmul_default_block_sharded
- matmul.full.matmul_default_height_sharded
- matmul.full.matmul_default_interleaved
Expand Down
79 changes: 79 additions & 0 deletions tests/sweep_framework/sweeps/reduction/mean/mean.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial
import numpy as np

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_shape": gen_shapes([1, 1, 1, 1], [2, 6, 128, 128], [1, 1, 32, 32], 32),
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_layout": [ttnn.TILE_LAYOUT],
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
},
}


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_a_dtype,
input_layout,
input_a_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

if input_layout == ttnn.ROW_MAJOR_LAYOUT:
input_shape = sanitize_shape_rm(input_shape)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.mean)
torch_output_tensor = golden_function(torch_input_tensor_a, dim=-1, keepdim=True)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=input_a_memory_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.mean(input_tensor_a, dim=-1, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(output_tensor)

e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
79 changes: 79 additions & 0 deletions tests/sweep_framework/sweeps/reduction/std/std.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial
import numpy as np

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"xfail": {
"input_shape": gen_shapes([1, 1, 1, 1], [2, 6, 128, 128], [1, 1, 32, 32], 32),
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_layout": [ttnn.TILE_LAYOUT],
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
},
}


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_a_dtype,
input_layout,
input_a_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

if input_layout == ttnn.ROW_MAJOR_LAYOUT:
input_shape = sanitize_shape_rm(input_shape)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.std)
torch_output_tensor = golden_function(torch_input_tensor_a, dim=-1, keepdim=True)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=input_a_memory_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.std(input_tensor_a, dim=-1, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(output_tensor)

e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]
79 changes: 79 additions & 0 deletions tests/sweep_framework/sweeps/reduction/var/var.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial
import numpy as np

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"xfail": {
"input_shape": gen_shapes([1, 1, 1, 1], [2, 6, 128, 128], [1, 1, 32, 32], 32),
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_layout": [ttnn.TILE_LAYOUT],
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
},
}


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_a_dtype,
input_layout,
input_a_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

if input_layout == ttnn.ROW_MAJOR_LAYOUT:
input_shape = sanitize_shape_rm(input_shape)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.var)
torch_output_tensor = golden_function(torch_input_tensor_a, dim=-1, keepdim=True)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=input_a_memory_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.var(input_tensor_a, dim=-1, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(output_tensor)

e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]

0 comments on commit a2b9e1a

Please sign in to comment.