Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce FinalizedPlan #563

Merged
merged 1 commit into from
Sep 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion cubed/array_api/array_object.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def _repr_html_(self):
grid=grid,
nbytes=nbytes,
cbytes=cbytes,
arrs_in_plan=f"{self.plan.num_arrays()} arrays in Plan",
arrs_in_plan=f"{self.plan._finalize().num_arrays()} arrays in Plan",
arrtype="np.ndarray",
)

Expand Down
115 changes: 66 additions & 49 deletions cubed/core/plan.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,9 @@ def _compile_blockwise(self, dag, compile_function: Decorator) -> nx.MultiDiGrap
"""Compiles functions from all blockwise ops by mutating the input dag."""
# Recommended: make a copy of the dag before calling this function.

compile_with_config = 'config' in inspect.getfullargspec(compile_function).kwonlyargs
compile_with_config = (
"config" in inspect.getfullargspec(compile_function).kwonlyargs
)

for n in dag.nodes:
node = dag.nodes[n]
Expand All @@ -219,31 +221,36 @@ def _compile_blockwise(self, dag, compile_function: Decorator) -> nx.MultiDiGrap
continue

if compile_with_config:
compiled = compile_function(node["pipeline"].config.function, config=node["pipeline"].config)
compiled = compile_function(
node["pipeline"].config.function, config=node["pipeline"].config
)
else:
compiled = compile_function(node["pipeline"].config.function)

# node is a blockwise primitive_op.
# maybe we should investigate some sort of optics library for frozen dataclasses...
new_pipeline = dataclasses.replace(
node["pipeline"],
config=dataclasses.replace(node["pipeline"].config, function=compiled)
config=dataclasses.replace(node["pipeline"].config, function=compiled),
)
node["pipeline"] = new_pipeline

return dag

@lru_cache
def _finalize_dag(
self, optimize_graph: bool = True, optimize_function=None, compile_function: Optional[Decorator] = None,
) -> nx.MultiDiGraph:
def _finalize(
self,
optimize_graph: bool = True,
optimize_function=None,
compile_function: Optional[Decorator] = None,
) -> "FinalizedPlan":
dag = self.optimize(optimize_function).dag if optimize_graph else self.dag
# create a copy since _create_lazy_zarr_arrays mutates the dag
dag = dag.copy()
if callable(compile_function):
dag = self._compile_blockwise(dag, compile_function)
dag = self._create_lazy_zarr_arrays(dag)
return nx.freeze(dag)
return FinalizedPlan(nx.freeze(dag))

def execute(
self,
Expand All @@ -256,7 +263,10 @@ def execute(
spec=None,
**kwargs,
):
dag = self._finalize_dag(optimize_graph, optimize_function, compile_function)
finalized_plan = self._finalize(
optimize_graph, optimize_function, compile_function
)
dag = finalized_plan.dag

compute_id = f"compute-{datetime.now().strftime('%Y%m%dT%H%M%S.%f')}"

Expand All @@ -275,43 +285,6 @@ def execute(
event = ComputeEndEvent(compute_id, dag)
[callback.on_compute_end(event) for callback in callbacks]

def num_tasks(self, optimize_graph=True, optimize_function=None, resume=None):
"""Return the number of tasks needed to execute this plan."""
dag = self._finalize_dag(optimize_graph, optimize_function)
tasks = 0
for _, node in visit_nodes(dag, resume=resume):
tasks += node["primitive_op"].num_tasks
return tasks

def num_arrays(self, optimize_graph: bool = True, optimize_function=None) -> int:
"""Return the number of arrays in this plan."""
dag = self._finalize_dag(optimize_graph, optimize_function)
return sum(d.get("type") == "array" for _, d in dag.nodes(data=True))

def max_projected_mem(
self, optimize_graph=True, optimize_function=None, resume=None
):
"""Return the maximum projected memory across all tasks to execute this plan."""
dag = self._finalize_dag(optimize_graph, optimize_function)
projected_mem_values = [
node["primitive_op"].projected_mem
for _, node in visit_nodes(dag, resume=resume)
]
return max(projected_mem_values) if len(projected_mem_values) > 0 else 0

def total_nbytes_written(
self, optimize_graph: bool = True, optimize_function=None
) -> int:
"""Return the total number of bytes written for all materialized arrays in this plan."""
dag = self._finalize_dag(optimize_graph, optimize_function)
nbytes = 0
for _, d in dag.nodes(data=True):
if d.get("type") == "array":
target = d["target"]
if isinstance(target, LazyZarrArray):
nbytes += target.nbytes
return nbytes

def visualize(
self,
filename="cubed",
Expand All @@ -321,7 +294,8 @@ def visualize(
optimize_function=None,
show_hidden=False,
):
dag = self._finalize_dag(optimize_graph, optimize_function)
finalized_plan = self._finalize(optimize_graph, optimize_function)
dag = finalized_plan.dag
dag = dag.copy() # make a copy since we mutate the DAG below

# remove edges from create-arrays output node to avoid cluttering the diagram
Expand All @@ -336,9 +310,9 @@ def visualize(
"rankdir": rankdir,
"label": (
# note that \l is used to left-justify each line (see https://www.graphviz.org/docs/attrs/nojustify/)
rf"num tasks: {self.num_tasks(optimize_graph, optimize_function)}\l"
rf"max projected memory: {memory_repr(self.max_projected_mem(optimize_graph, optimize_function))}\l"
rf"total nbytes written: {memory_repr(self.total_nbytes_written(optimize_graph, optimize_function))}\l"
rf"num tasks: {finalized_plan.num_tasks()}\l"
rf"max projected memory: {memory_repr(finalized_plan.max_projected_mem())}\l"
rf"total nbytes written: {memory_repr(finalized_plan.total_nbytes_written())}\l"
rf"optimized: {optimize_graph}\l"
),
"labelloc": "bottom",
Expand Down Expand Up @@ -474,6 +448,49 @@ def visualize(
return None


class FinalizedPlan:
"""A plan that is ready to be run.

Finalizing a plan involves the following steps:
1. optimization (optional)
2. adding housekeping nodes to create arrays
3. compiling functions (optional)
4. freezing the final DAG so it can't be changed
"""

def __init__(self, dag):
self.dag = dag

def max_projected_mem(self, resume=None):
"""Return the maximum projected memory across all tasks to execute this plan."""
projected_mem_values = [
node["primitive_op"].projected_mem
for _, node in visit_nodes(self.dag, resume=resume)
]
return max(projected_mem_values) if len(projected_mem_values) > 0 else 0

def num_arrays(self) -> int:
"""Return the number of arrays in this plan."""
return sum(d.get("type") == "array" for _, d in self.dag.nodes(data=True))

def num_tasks(self, resume=None):
"""Return the number of tasks needed to execute this plan."""
tasks = 0
for _, node in visit_nodes(self.dag, resume=resume):
tasks += node["primitive_op"].num_tasks
return tasks

def total_nbytes_written(self) -> int:
"""Return the total number of bytes written for all materialized arrays in this plan."""
nbytes = 0
for _, d in self.dag.nodes(data=True):
if d.get("type") == "array":
target = d["target"]
if isinstance(target, LazyZarrArray):
nbytes += target.nbytes
return nbytes


def arrays_to_dag(*arrays):
from .array import check_array_specs

Expand Down
9 changes: 5 additions & 4 deletions cubed/tests/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,13 +373,14 @@ def test_reduction_multiple_rounds(tmp_path, executor):
a = xp.ones((100, 10), dtype=np.uint8, chunks=(1, 10), spec=spec)
b = xp.sum(a, axis=0, dtype=np.uint8)
# check that there is > 1 blockwise step (after optimization)
finalized_plan = b.plan._finalize()
blockwises = [
n
for (n, d) in b.plan.dag.nodes(data=True)
for (n, d) in finalized_plan.dag.nodes(data=True)
if d.get("op_name", None) == "blockwise"
]
assert len(blockwises) > 1
assert b.plan.max_projected_mem() <= 1000
assert finalized_plan.max_projected_mem() <= 1000
assert_array_equal(b.compute(executor=executor), np.ones((100, 10)).sum(axis=0))


Expand Down Expand Up @@ -555,7 +556,7 @@ def test_plan_scaling(tmp_path, factor):
)
c = xp.matmul(a, b)

assert c.plan.num_tasks() > 0
assert c.plan._finalize().num_tasks() > 0
c.visualize(filename=tmp_path / "c")


Expand All @@ -568,7 +569,7 @@ def test_plan_quad_means(tmp_path, t_length):
uv = u * v
m = xp.mean(uv, axis=0, split_every=10, use_new_impl=True)

assert m.plan.num_tasks() > 0
assert m.plan._finalize().num_tasks() > 0
m.visualize(
filename=tmp_path / "quad_means_unoptimized",
optimize_graph=False,
Expand Down
17 changes: 11 additions & 6 deletions cubed/tests/test_executor_features.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,7 +181,7 @@ def test_resume(spec, executor):
d = xp.negative(c)

num_created_arrays = 2 # c, d
assert d.plan.num_tasks(optimize_graph=False) == num_created_arrays + 8
assert d.plan._finalize(optimize_graph=False).num_tasks() == num_created_arrays + 8

task_counter = TaskCounter()
c.compute(executor=executor, callbacks=[task_counter], optimize_graph=False)
Expand Down Expand Up @@ -321,13 +321,15 @@ def test_check_runtime_memory_processes(spec, executor):

try:
from numba import jit as numba_jit

COMPILE_FUNCTIONS.append(numba_jit)
except ModuleNotFoundError:
pass

try:
if 'jax' in os.environ.get('CUBED_BACKEND_ARRAY_API_MODULE', ''):
if "jax" in os.environ.get("CUBED_BACKEND_ARRAY_API_MODULE", ""):
from jax import jit as jax_jit

COMPILE_FUNCTIONS.append(jax_jit)
except ModuleNotFoundError:
pass
Expand All @@ -339,7 +341,8 @@ def test_check_compilation(spec, executor, compile_function):
b = xp.asarray([[1, 1, 1], [1, 1, 1], [1, 1, 1]], chunks=(2, 2), spec=spec)
c = xp.add(a, b)
assert_array_equal(
c.compute(executor=executor, compile_function=compile_function), np.array([[2, 3, 4], [5, 6, 7], [8, 9, 10]])
c.compute(executor=executor, compile_function=compile_function),
np.array([[2, 3, 4], [5, 6, 7], [8, 9, 10]]),
)


Expand All @@ -352,7 +355,7 @@ def compile_function(func):
c = xp.add(a, b)
with pytest.raises(NotImplementedError) as excinfo:
c.compute(executor=executor, compile_function=compile_function)

assert "add" in str(excinfo.value), "Compile function was applied to add operation."


Expand All @@ -365,5 +368,7 @@ def compile_function(func, *, config=None):
c = xp.add(a, b)
with pytest.raises(NotImplementedError) as excinfo:
c.compute(executor=executor, compile_function=compile_function)

assert "BlockwiseSpec" in str(excinfo.value), "Compile function was applied with a config argument."

assert "BlockwiseSpec" in str(
excinfo.value
), "Compile function was applied with a config argument."
Loading
Loading