Skip to content
/ csstemu Public

A user-friendly python package for CSST cosmological emulator to predict various statistics.

License

Notifications You must be signed in to change notification settings

czymh/csstemu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

80 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

China Space Station Telescope (CSST) Emulator

A python package for CSST cosmological emulator. This package is only dependent on numpy, scipy packages. All the gaussian process trainings have been done in advance. The whole package predicts the cosmological statistics [e.g., nonlinear matter power spectrum] with ~ 1 millisecond per cosmology.

The parameter space are shown as followed:

Parameter Lower Limit Upper Limit
$\Omega_b$ 0.04 0.06
$\Omega_m$ 0.24 0.40
$H_0$ 60 80
$n_s$ 0.92 1.00
$A_s\times 10^{9}$ 1.7 2.5
$w$ -1.3 -0.7
$w_a$ -0.5 0.5
$\sum M_{\nu}$ 0 0.3

Up to now, the supportted statistics include:

  1. PkLin: Linear matter power spectrum ($0\leq z \leq3$ and $10^{-5}\leq k \leq 100 {\rm\ hMpc^{-1}}$);
  2. Pkmm: Matter power spectrum ($0\leq z \leq3$ and $0.00628\leq k \leq 10 {\rm\ hMpc^{-1}}$);
  3. Xihm: Halo-matter cross-correlation function ($0\leq z \leq0.8$ and $10^{-2}\leq r \leq 500 {\rm\ h^{-1}Mpc}$). Now this only supports 7 fixed mass bin: [13.0, 13.2, 13.4, 13.6, 13.8, 14.0, 14.4, 15.0];
  4. Ximm: Matter-matter correlation function ($0\leq z \leq3$ and $r \geq 10^{-2} {\ h^{-1}\mathrm{Mpc}}$);
  5. Cell: Lensing convergence power spectrum ($0.5\leq z_s \leq3.0$);
  6. comming soon ~~ :).

The accuracy for the matter power spectrum on the whole parameter space is shown as followed: The leave-one-out error of non-linear power spectrum.

Dependence

  • numpy
  • scipy
  • CAMB [optional]
  • CLASS [optional]
  • CCL [optional]

Installation

You can install this package via pip:

pip install git+https://github.com/czymh/csstemu

Usage

You can see the documentation on readthedocs for more details. Some examples are shown in the test directory.

Acknowledgements

Feel free to contact chyiru@sjtu.edu.cn if you have any questions.

About

A user-friendly python package for CSST cosmological emulator to predict various statistics.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published