Skip to content
/ lasio Public
forked from kinverarity1/lasio

Read/write well data from Log ASCII Standard (LAS) files

License

Notifications You must be signed in to change notification settings

dagrha/lasio

 
 

Repository files navigation

lasio

Status Version License Python versions Build Status codecov Docker Build

This is a Python 2.7 and 3.3+ package to read and write Log ASCII Standard (LAS) files, used for borehole data such as geophysical, geological, or petrophysical logs. It's compatible with versions 1.2 and 2.0 of the LAS file specification, published by the Canadian Well Logging Society. Support for LAS 3 is being worked on. In principle it is designed to read as many types of LAS files as possible, including ones containing common errors or non-compliant formatting.

Depending on your particular application you may also want to check out striplog for stratigraphic/lithological data, and welly for dealing with data at the well level. lasio is primarily for reading & writing LAS files.

Note this is not a package for reading LiDAR data (also called "LAS files").

Documentation

See here for the complete lasio package documentation.

Quick start

Install the usual way:

$ pip install lasio

Very quick example session:

>>> import lasio
>>> las = lasio.read("sample_big.las")

Data is accessible both directly as numpy arrays

>>> las.keys()
['DEPT', 'DT', 'RHOB', 'NPHI', 'SFLU', 'SFLA', 'ILM', 'ILD']
>>> las['SFLU']
array([ 123.45,  123.45,  123.45, ...,  123.45,  123.45,  123.45])
>>> las['DEPT']
array([ 1670.   ,  1669.875,  1669.75 , ...,  1669.75 ,  1670.   ,
        1669.875])

and as CurveItem objects with associated metadata:

>>> las.curves
[CurveItem(mnemonic=DEPT, unit=M, value=, descr=1  DEPTH, original_mnemonic=DEPT, data.shape=(29897,)), 
CurveItem(mnemonic=DT, unit=US/M, value=, descr=2  SONIC TRANSIT TIME, original_mnemonic=DT, data.shape=(29897,)), 
CurveItem(mnemonic=RHOB, unit=K/M3, value=, descr=3  BULK DENSITY, original_mnemonic=RHOB, data.shape=(29897,)), 
CurveItem(mnemonic=NPHI, unit=V/V, value=, descr=4   NEUTRON POROSITY, original_mnemonic=NPHI, data.shape=(29897,)), 
CurveItem(mnemonic=SFLU, unit=OHMM, value=, descr=5  RXO RESISTIVITY, original_mnemonic=SFLU, data.shape=(29897,)), 
CurveItem(mnemonic=SFLA, unit=OHMM, value=, descr=6  SHALLOW RESISTIVITY, original_mnemonic=SFLA, data.shape=(29897,)), 
CurveItem(mnemonic=ILM, unit=OHMM, value=, descr=7  MEDIUM RESISTIVITY, original_mnemonic=ILM, data.shape=(29897,)), 
CurveItem(mnemonic=ILD, unit=OHMM, value=, descr=8  DEEP RESISTIVITY, original_mnemonic=ILD, data.shape=(29897,))]

Header information is parsed into simple HeaderItem objects, and stored in a dictionary for each section of the header:

>>> las.version
[HeaderItem(mnemonic=VERS, unit=, value=1.2, descr=CWLS LOG ASCII STANDARD -VERSION 1.2, original_mnemonic=VERS), 
HeaderItem(mnemonic=WRAP, unit=, value=NO, descr=ONE LINE PER DEPTH STEP, original_mnemonic=WRAP)]
>>> las.well
[HeaderItem(mnemonic=STRT, unit=M, value=1670.0, descr=, original_mnemonic=STRT), 
HeaderItem(mnemonic=STOP, unit=M, value=1660.0, descr=, original_mnemonic=STOP), 
HeaderItem(mnemonic=STEP, unit=M, value=-0.125, descr=, original_mnemonic=STEP), 
HeaderItem(mnemonic=NULL, unit=, value=-999.25, descr=, original_mnemonic=NULL), 
HeaderItem(mnemonic=COMP, unit=, value=ANY OIL COMPANY LTD., descr=COMPANY, original_mnemonic=COMP), 
HeaderItem(mnemonic=WELL, unit=, value=ANY ET AL OIL WELL #12, descr=WELL, original_mnemonic=WELL), 
HeaderItem(mnemonic=FLD, unit=, value=EDAM, descr=FIELD, original_mnemonic=FLD), 
HeaderItem(mnemonic=LOC, unit=, value=A9-16-49, descr=LOCATION, original_mnemonic=LOC), 
HeaderItem(mnemonic=PROV, unit=, value=SASKATCHEWAN, descr=PROVINCE, original_mnemonic=PROV), 
HeaderItem(mnemonic=SRVC, unit=, value=ANY LOGGING COMPANY LTD., descr=SERVICE COMPANY, original_mnemonic=SRVC), 
HeaderItem(mnemonic=DATE, unit=, value=25-DEC-1988, descr=LOG DATE, original_mnemonic=DATE), 
HeaderItem(mnemonic=UWI, unit=, value=100091604920, descr=UNIQUE WELL ID, original_mnemonic=UWI)]
>>> las.params
[HeaderItem(mnemonic=BHT, unit=DEGC, value=35.5, descr=BOTTOM HOLE TEMPERATURE, original_mnemonic=BHT), 
HeaderItem(mnemonic=BS, unit=MM, value=200.0, descr=BIT SIZE, original_mnemonic=BS), 
HeaderItem(mnemonic=FD, unit=K/M3, value=1000.0, descr=FLUID DENSITY, original_mnemonic=FD), 
HeaderItem(mnemonic=MATR, unit=, value=0.0, descr=NEUTRON MATRIX(0=LIME,1=SAND,2=DOLO), original_mnemonic=MATR), 
HeaderItem(mnemonic=MDEN, unit=, value=2710.0, descr=LOGGING MATRIX DENSITY, original_mnemonic=MDEN), 
HeaderItem(mnemonic=RMF, unit=OHMM, value=0.216, descr=MUD FILTRATE RESISTIVITY, original_mnemonic=RMF), 
HeaderItem(mnemonic=DFD, unit=K/M3, value=1525.0, descr=DRILL FLUID DENSITY, original_mnemonic=DFD)]

The data is stored as a 2D numpy array:

>>> las.data
array([[ 1670.   ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1669.875,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1669.75 ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       ...,
       [ 1669.75 ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1670.   ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1669.875,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ]])

You can also retrieve and load data as a pandas DataFrame, build LAS files from scratch, write them back to disc, and export to Excel, amongst other things.

See the documentation for more details.

License

MIT

About

Read/write well data from Log ASCII Standard (LAS) files

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 65.0%
  • Python 34.9%
  • Dockerfile 0.1%