Skip to content

daquexian/faster-rwkv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Faster RWKV

CUDA

Convert Model

  1. Generate a ChatRWKV weight file by v2/convert_model.py (in ChatRWKV repo) and strategy cuda fp16.

  2. Generate a faster-rwkv weight file by tools/convert_weight.py. For example, python3 tools/convert_weight.py RWKV-4-World-CHNtuned-1.5B-v1-20230620-ctx4096-converted-fp16.pth rwkv-4-1.5b-chntuned-fp16.fr.

Build

mkdir build
cd build
cmake -DFR_ENABLE_CUDA=ON -DCMAKE_BUILD_TYPE=Release -GNinja ..
ninja

Run

./chat tokenizer_file_path weight_file_path "cuda fp16"

For example, ./chat ../tokenizer_model ../rwkv-4-1.5b-chntuned-fp16.fr "cuda fp16"

Android

Convert Model

  1. Generate a ChatRWKV weight file by v2/convert_model.py (in ChatRWKV repo) and strategy cuda fp32 or cpu fp32. Note that though we use fp32 here, the real dtype is determined is the following step.

  2. Generate a faster-rwkv weight file by tools/convert_weight.py.

  3. Export ncnn model by ./export_ncnn <input_faster_rwkv_model_path> <output_path_prefix>. You can download pre-built export_ncnn from Releases if you are a Linux users, or build it by yourself.

Build

Android App Development

Download the pre-built Android AAR library from Releases, or run the aar/build_aar.sh to build it by yourself.

Android C++ Development

For the path of Android NDK and toolchain file, please refer to Android NDK docs.

mkdir build
cd build
cmake -DFR_ENABLE_NCNN=ON -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-28 -DANDROID_NDK=xxxx -DCMAKE_TOOLCHAIN_FILE=xxxx -DCMAKE_BUILD_TYPE=Release -GNinja ..
ninja

Run in Termux (Ignore it if you are an app developer)

  1. Copy chat into the Android phone (by using adb or Termux).

  2. Copy the tokenizer_model and the ncnn models (.param, .bin and .config) into the Android phone (by using adb or Termux).

  3. Run ./chat tokenizer_model ncnn_models_basename "ncnn fp16" in adb shell or Termux, for example, if the ncnn models are named rwkv-4-chntuned-1.5b.param, rwkv-4-chntuned-1.5b.bin and rwkv-4-chntuned-1.5b.config, the command should be ./chat tokenizer_model rwkv-4-chntuned-1.5b "ncnn fp16".

Requirements

  • Android System >= 9.0

  • RAM >= 4GB (for 1.5B model)

  • No hard requirement for CPU. More powerful = faster.

Android Demo

Run one of the following commands in Termux to download prebuilt executables and models automatically. The download script supports continuely downloading partially downloaded files, so feel free to Ctrl-C and restart it if the speed is too slow.

Executables, 1.5B CHNtuned int8 model, 1.5B CHNtuned int4 model and 0.1B world int8 model:

curl -L -s https://raw.githubusercontent.com/daquexian/faster-rwkv/master/download_binaries_and_models_termux.sh | bash -s 3

Executables, 1.5B CHNtuned int4 model and 0.1B world int8 model:

curl -L -s https://raw.githubusercontent.com/daquexian/faster-rwkv/master/download_binaries_and_models_termux.sh | bash -s 2

Executables and 0.1B world int8 model:

curl -L -s https://raw.githubusercontent.com/daquexian/faster-rwkv/master/download_binaries_and_models_termux.sh | bash -s 1

Executables only:

curl -L -s https://raw.githubusercontent.com/daquexian/faster-rwkv/master/download_binaries_and_models_termux.sh | bash -s 0

Export ONNX

  1. Install rwkv2onnx python package by pip install rwkv2onnx.

  2. Clone https://github.com/BlinkDL/ChatRWKV

  3. Run rwkv2onnx <input path> <output path> <ChatRWKV path>. For example, rwkv2onnx ~/RWKV-5-World-0.1B-v1-20230803-ctx4096.pth ~/RWKV-5-0.1B.onnx ~/ChatRWKV

TODO