This project is unmaintained. We recommended that you use dask-jobqueue instead: https://github.com/dask/dask-jobqueue
Deploy a Dask.distributed cluster on top of a cluster running a DRMAA-compliant job scheduler.
Launch from Python
from dask_drmaa import DRMAACluster
cluster = DRMAACluster()
from dask.distributed import Client
client = Client(cluster)
cluster.start_workers(2)
>>> future = client.submit(lambda x: x + 1, 10)
>>> future.result()
11
Or launch from the command line:
$ dask-drmaa 10 # starts local scheduler and ten remote workers
Python packages are available from PyPI and can be installed with pip
:
pip install dask-drmaa
Also conda
packages are available from conda-forge:
conda install -c conda-forge dask-drmaa
Additionally the package can be installed from GitHub with the latest changes:
pip install git+https://github.com/dask/dask-drmaa.git --upgrade
or:
git clone git@github.com:dask/dask-drmaa.git cd dask-drmaa pip install .
You must have the DRMAA system library installed and be able to submit jobs
from your local machine. Please make sure to set the environment variable
DRMAA_LIBRARY_PATH
to point to the location of libdrmaa.so
for your
system.
This repository contains a Docker-compose testing harness for a Son of Grid Engine cluster with a master and two slaves. You can initialize this system as follows:
docker-compose build
./start-sge.sh
If you have done this previously and need to refresh your solution you can do the following
docker-compose stop
docker-compose build --no-cache
./start-sge.sh
And run tests with py.test in the master docker container
docker exec -it sge_master /bin/bash -c "cd /dask-drmaa; python setup.py develop"
docker exec -it sge_master /bin/bash -c "cd /dask-drmaa; py.test dask_drmaa --verbose"
Dask-drmaa can adapt to scheduler load, deploying more workers on the grid when it has more work, and cleaning up these workers when they are no longer necessary. This can simplify setup (you can just leave a cluster running) and it can reduce load on the cluster, making IT happy.
To enable this, call the adapt
method of a DRMAACluster
. You can
submit computations to the cluster without ever explicitly creating workers.
from dask_drmaa import DRMAACluster
from dask.distributed import Client
cluster = DRMAACluster()
cluster.adapt()
client = Client(cluster)
futures = client.map(func, seq) # workers will be created as necessary
The DRMAA interface is the lowest common denominator among many different job schedulers like SGE, SLURM, LSF, Torque, and others. However, sometimes users need to specify parameters particular to their cluster, such as resource queues, wall times, memory constraints, etc..
DRMAA allows users to pass native specifications either when constructing the cluster or when starting new workers:
cluster = DRMAACluster(template={'nativeSpecification': '-l h_rt=01:00:00'})
# or
cluster.start_workers(10, nativeSpecification='-l h_rt=01:00:00')
- DRMAA: The Distributed Resource Management Application API, a high level API for general use on traditional job schedulers
- drmaa-python: The Python bindings for DRMAA
- DaskSGE: An earlier dask-drmaa implementation
- Son of Grid Engine: The default implementation used in testing
- Dask.distributed: The actual distributed computing library this launches