Skip to content

dataflowr/Project-Neural-Bootstrapper

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DL-DIY potential project ideas

  • try out out-of-distribution detection on CamVid-OOD semantic segmentation [original train set] [OOD test set]
  • for image classification assess the impact of mixing techniques (mixup, cutmix, etc.) on performance
  • train improved model and evaluate performance on distribution shift settings, e.g., CIFAR-C

NeuBoots

This repository contains an official implementation of the Neural Bootstrapper (NeurIPS 2021).

Prerequsites

  • python==3.7
  • pytorch==1.2
  • torchvision
  • tqdm
  • PIL

Configuration script

Before running main.py, please make an ini script file under the script folder for configurations.

Example of ini_file:

[default]

dataset = cifar100
output_dir = outs
num_epoch = 200
dist = False
phase = train
cpus = 4
gpus = '2'
model = resnet34
is_nbs = True
num_classes = 100
lr = 0.1
weight_decay = 0.0005
optim = sgd
batch_size = 128
n_a = 400
num_bs = 100
dropout_rate = 0.
scheduler = cosine
epoch_th = 30

Run

CIFAR-10

➜ python main.py cutout/cifar10

CIFAR-100

➜ python main.py cutout/cifar100

SVHN

➜ python main.py cutout/svhn

Citation

@inproceedings{neuboots2021,
  title={Neural Bootstrapper},
  author={Shin, Minsuk and Cho, Hyungjoo and Min, Hyun-seok and Lim, Sungbin},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

About

Neural Bootstrapper (NeuBoots)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%