Skip to content

Commit

Permalink
Update RETRIEVAL.md
Browse files Browse the repository at this point in the history
  • Loading branch information
rolodexter committed Nov 1, 2024
1 parent f1d6696 commit 5cb5f46
Showing 1 changed file with 208 additions and 0 deletions.
208 changes: 208 additions & 0 deletions docs/storage/RETRIEVAL.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
# Document Retrieval System

## Overview

The LN1 Document Retrieval System provides efficient and secure access to legal documents stored across the distributed network. This document outlines the retrieval mechanisms, caching strategies, and access patterns implemented in the system.

## Retrieval Architecture

### Core Components

```python
class RetrievalManager:
def __init__(self):
self.cache_manager = CacheManager()
self.storage_client = StorageClient()
self.access_controller = AccessController()
self.performance_monitor = PerformanceMonitor()
```

## Retrieval Process

### Document Access Flow

```python
class DocumentRetriever:
async def retrieve_document(self, doc_id: str):
# Check access permissions
await self.access_controller.verify_access(doc_id)

# Try cache first
if cached := await self.cache_manager.get(doc_id):
return cached

# Retrieve from storage
document = await self.storage_client.fetch(doc_id)

# Update cache
await self.cache_manager.set(doc_id, document)

return document
```

## Caching Strategy

### Multi-Level Cache

```python
class CacheManager:
def __init__(self):
self.memory_cache = LRUCache(1000)
self.disk_cache = PersistentCache()
self.network_cache = DistributedCache()

async def get_document(self, doc_id):
# Check memory cache
if doc := self.memory_cache.get(doc_id):
return doc

# Check disk cache
if doc := await self.disk_cache.get(doc_id):
self.memory_cache.set(doc_id, doc)
return doc

# Check network cache
if doc := await self.network_cache.get(doc_id):
await self.update_local_caches(doc)
return doc
```

## Performance Optimization

### Smart Prefetching

```python
class PrefetchManager:
def __init__(self):
self.predictor = AccessPredictor()
self.resource_monitor = ResourceMonitor()

async def prefetch_related(self, doc_id):
if not self.resource_monitor.can_prefetch():
return

related_docs = await self.predictor.get_related_docs(doc_id)
for related_id in related_docs:
await self.cache_manager.prefetch(related_id)
```

### Load Balancing

```python
class LoadBalancer:
def select_storage_node(self, doc_id):
return {
'node_selection': self.get_optimal_node(),
'backup_nodes': self.get_backup_nodes(),
'latency_map': self.get_latency_map()
}
```

## Security Implementation

### Access Control

```python
class AccessController:
async def verify_access(self, doc_id, user):
permissions = await self.get_permissions(user)
document_acl = await self.get_document_acl(doc_id)

return {
'can_access': self.check_permission(permissions, document_acl),
'access_level': self.determine_access_level(permissions),
'restrictions': self.get_restrictions(document_acl)
}
```

### Encryption

```python
class EncryptionManager:
def __init__(self):
self.key_manager = KeyManager()

async def decrypt_document(self, encrypted_doc):
key = await self.key_manager.get_key(encrypted_doc.key_id)
return await self.decrypt(encrypted_doc.content, key)
```

## Error Handling

### Recovery Procedures

```python
class ErrorHandler:
async def handle_retrieval_error(self, error):
# Log error
await self.log_error(error)

# Determine recovery action
action = self.determine_recovery_action(error)

# Execute recovery
return await self.execute_recovery(action)
```

## Monitoring

### Performance Metrics

```python
class PerformanceMonitor:
def collect_metrics(self):
return {
'retrieval_latency': self.measure_latency(),
'cache_hit_rate': self.calculate_cache_hits(),
'bandwidth_usage': self.measure_bandwidth(),
'error_rate': self.calculate_error_rate()
}
```

## Integration Points

### API Endpoints

```python
class RetrievalAPI:
async def register_endpoints(self):
return {
'/documents/{id}': self.handle_document_retrieval,
'/documents/batch': self.handle_batch_retrieval,
'/documents/stream': self.handle_stream_retrieval
}
```

### Event System

```python
class EventManager:
async def handle_events(self):
return {
'document_accessed': self.on_document_accessed,
'cache_updated': self.on_cache_updated,
'error_occurred': self.on_error_occurred
}
```

## Best Practices

### Implementation Guidelines

1. **Caching Strategy**
- Implement proper cache invalidation
- Use appropriate cache sizes
- Monitor cache hit rates
- Regular cache cleanup

2. **Error Handling**
- Implement retry mechanisms
- Provide fallback options
- Log all errors
- Monitor error patterns

3. **Performance Optimization**
- Use connection pooling
- Implement request batching
- Enable compression
- Monitor resource usage

0 comments on commit 5cb5f46

Please sign in to comment.