Skip to content

Commit

Permalink
Updates
Browse files Browse the repository at this point in the history
  • Loading branch information
rolodexter committed Nov 1, 2024
1 parent bb22e6f commit 5e06a65
Show file tree
Hide file tree
Showing 5 changed files with 1,200 additions and 0 deletions.
209 changes: 209 additions & 0 deletions docs/components/indexer/COLLECTION.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
# Document Collection System

## Overview

The Document Collection System is a core component of the LN1 indexer that handles the gathering, processing, and initial organization of legal documents before they enter the validation pipeline.

## Collection Components

### Document Intake

```python
class DocumentIntake:
def __init__(self):
self.supported_formats = ['PDF', 'DOCX', 'TXT', 'HTML']
self.metadata_extractor = MetadataExtractor()
self.content_parser = ContentParser()
```

### Content Structure

```typescript
interface DocumentContent {
title: string;
content: string;
metadata: {
documentType: string;
jurisdiction: string;
dateCreated: timestamp;
version: string;
hash: string;
}
}
```

## Collection Process

### Document Reception

1. **Initial Validation**
- Format verification
- Size constraints
- Structure validation
- Duplicate detection

2. **Metadata Extraction**
- Document properties
- Source information
- Classification data
- Version control

### Processing Pipeline

```python
class CollectionPipeline:
async def process_document(self, document):
validated = await self.validate_format(document)
parsed = await self.parse_content(validated)
enriched = await self.enrich_metadata(parsed)
return await self.prepare_for_indexing(enriched)
```

## Storage Integration

### Temporary Storage

- Document buffer system
- Processing queue
- Failed document handling
- Retry mechanisms

### Permanent Storage

```python
class StorageManager:
def store_document(self, document):
return {
'location': self.determine_storage_location(document),
'replicas': self.calculate_replica_count(document),
'retention': self.get_retention_policy(document)
}
```

## Quality Control

### Validation Rules

- Document completeness
- Format consistency
- Metadata accuracy
- Content integrity

### Error Handling

```python
class CollectionError:
def handle_error(self, error_type, document):
return {
'error': error_type,
'document_id': document.id,
'timestamp': current_timestamp(),
'resolution': self.get_resolution_steps(error_type)
}
```

## Performance Optimization

### Batch Processing

```python
class BatchProcessor:
async def process_batch(self, documents):
sorted_docs = self.sort_by_priority(documents)
processed = await self.parallel_process(sorted_docs)
return await self.validate_batch_results(processed)
```

### Resource Management

- CPU utilization
- Memory management
- Storage optimization
- Network bandwidth

## Integration Points

### External Systems

- Document management systems
- Legal databases
- Court filing systems
- Enterprise systems

### Internal Components

```typescript
interface ComponentIntegration {
indexer: 'Document indexing system',
validator: 'Content validation',
storage: 'Permanent storage',
api: 'External interfaces'
}
```

## Monitoring

### Collection Metrics

```python
class CollectionMonitor:
def collect_metrics(self):
return {
'documents_processed': self.count_processed(),
'processing_time': self.average_processing_time(),
'error_rate': self.calculate_error_rate(),
'queue_status': self.get_queue_metrics()
}
```

### Health Checks

- System availability
- Processing capacity
- Error rates
- Queue status

## Security Measures

### Document Security

- Access control
- Encryption at rest
- Secure transmission
- Audit logging

### Compliance

```python
class ComplianceManager:
def ensure_compliance(self, document):
return {
'gdpr_compliant': self.check_gdpr_compliance(document),
'hipaa_compliant': self.check_hipaa_compliance(document),
'retention_policy': self.get_retention_requirements(document)
}
```

## Development Guidelines

### Implementation Standards

- Error handling patterns
- Logging requirements
- Performance benchmarks
- Testing coverage

### Code Examples

```python
# Example implementation of document collection
class DocumentCollector:
async def collect_document(self, document):
try:
validated = await self.validate_document(document)
processed = await self.process_document(validated)
stored = await self.store_document(processed)
return await self.confirm_collection(stored)
except CollectionException as e:
await self.handle_collection_error(e)
```
Loading

0 comments on commit 5e06a65

Please sign in to comment.