-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(ingest/transformer): tags to terms transformer (#10758)
Co-authored-by: Aseem Bansal <asmbansal2@gmail.com>
- Loading branch information
1 parent
8f19d37
commit 79c4e2a
Showing
6 changed files
with
446 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
145 changes: 145 additions & 0 deletions
145
metadata-ingestion/src/datahub/ingestion/transformer/tags_to_terms.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from typing import List, Optional, Set, cast | ||
|
||
import datahub.emitter.mce_builder as builder | ||
from datahub.configuration.common import ( | ||
TransformerSemantics, | ||
TransformerSemanticsConfigModel, | ||
) | ||
from datahub.emitter.mce_builder import Aspect, make_term_urn | ||
from datahub.ingestion.api.common import PipelineContext | ||
from datahub.ingestion.graph.client import DataHubGraph | ||
from datahub.ingestion.transformer.dataset_transformer import TagsToTermTransformer | ||
from datahub.metadata.schema_classes import ( | ||
AuditStampClass, | ||
GlobalTagsClass, | ||
GlossaryTermAssociationClass, | ||
GlossaryTermsClass, | ||
SchemaMetadataClass, | ||
) | ||
|
||
|
||
class TagsToTermMapperConfig(TransformerSemanticsConfigModel): | ||
tags: List[str] | ||
|
||
|
||
class TagsToTermMapper(TagsToTermTransformer): | ||
"""This transformer maps specified tags to corresponding glossary terms for a dataset.""" | ||
|
||
def __init__(self, config: TagsToTermMapperConfig, ctx: PipelineContext): | ||
super().__init__() | ||
self.ctx: PipelineContext = ctx | ||
self.config: TagsToTermMapperConfig = config | ||
|
||
@classmethod | ||
def create(cls, config_dict: dict, ctx: PipelineContext) -> "TagsToTermMapper": | ||
config = TagsToTermMapperConfig.parse_obj(config_dict) | ||
return cls(config, ctx) | ||
|
||
@staticmethod | ||
def _merge_with_server_glossary_terms( | ||
graph: DataHubGraph, | ||
urn: str, | ||
glossary_terms_aspect: Optional[GlossaryTermsClass], | ||
) -> Optional[GlossaryTermsClass]: | ||
if not glossary_terms_aspect or not glossary_terms_aspect.terms: | ||
# nothing to add, no need to consult server | ||
return None | ||
|
||
# Merge the transformed terms with existing server terms. | ||
# The transformed terms takes precedence, which may change the term context. | ||
server_glossary_terms_aspect = graph.get_glossary_terms(entity_urn=urn) | ||
if server_glossary_terms_aspect is not None: | ||
glossary_terms_aspect.terms = list( | ||
{ | ||
**{term.urn: term for term in server_glossary_terms_aspect.terms}, | ||
**{term.urn: term for term in glossary_terms_aspect.terms}, | ||
}.values() | ||
) | ||
|
||
return glossary_terms_aspect | ||
|
||
@staticmethod | ||
def get_tags_from_global_tags(global_tags: Optional[GlobalTagsClass]) -> Set[str]: | ||
"""Extracts tags urn from GlobalTagsClass.""" | ||
if not global_tags or not global_tags.tags: | ||
return set() | ||
|
||
return {tag_assoc.tag for tag_assoc in global_tags.tags} | ||
|
||
@staticmethod | ||
def get_tags_from_schema_metadata( | ||
schema_metadata: Optional[SchemaMetadataClass], | ||
) -> Set[str]: | ||
"""Extracts globalTags from all fields in SchemaMetadataClass.""" | ||
if not schema_metadata or not schema_metadata.fields: | ||
return set() | ||
tags = set() | ||
for field in schema_metadata.fields: | ||
if field.globalTags: | ||
tags.update( | ||
TagsToTermMapper.get_tags_from_global_tags(field.globalTags) | ||
) | ||
return tags | ||
|
||
def transform_aspect( | ||
self, entity_urn: str, aspect_name: str, aspect: Optional[Aspect] | ||
) -> Optional[Aspect]: | ||
|
||
in_glossary_terms: Optional[GlossaryTermsClass] = cast( | ||
Optional[GlossaryTermsClass], aspect | ||
) | ||
|
||
assert self.ctx.graph | ||
in_global_tags_aspect: Optional[GlobalTagsClass] = self.ctx.graph.get_tags( | ||
entity_urn | ||
) | ||
in_schema_metadata_aspect: Optional[ | ||
SchemaMetadataClass | ||
] = self.ctx.graph.get_schema_metadata(entity_urn) | ||
|
||
if in_global_tags_aspect is None and in_schema_metadata_aspect is None: | ||
return cast(Aspect, in_glossary_terms) | ||
|
||
global_tags = TagsToTermMapper.get_tags_from_global_tags(in_global_tags_aspect) | ||
schema_metadata_tags = TagsToTermMapper.get_tags_from_schema_metadata( | ||
in_schema_metadata_aspect | ||
) | ||
|
||
# Combine tags from both global and schema level | ||
combined_tags = global_tags.union(schema_metadata_tags) | ||
|
||
tag_set = set(self.config.tags) | ||
terms_to_add = set() | ||
tags_to_delete = set() | ||
|
||
# Check each global tag against the configured tag list and prepare terms | ||
for full_tag in combined_tags: | ||
tag_name = full_tag.split("urn:li:tag:")[-1].split(".")[-1].split(":")[0] | ||
if tag_name in tag_set: | ||
term_urn = make_term_urn(tag_name) | ||
terms_to_add.add(term_urn) | ||
tags_to_delete.add(full_tag) # Full URN for deletion | ||
|
||
if not terms_to_add: | ||
return cast(Aspect, in_glossary_terms) # No new terms to add | ||
|
||
for tag_urn in tags_to_delete: | ||
self.ctx.graph.remove_tag(tag_urn=tag_urn, resource_urn=entity_urn) | ||
|
||
# Initialize the Glossary Terms properly | ||
out_glossary_terms = GlossaryTermsClass( | ||
terms=[GlossaryTermAssociationClass(urn=term) for term in terms_to_add], | ||
auditStamp=AuditStampClass( | ||
time=builder.get_sys_time(), actor="urn:li:corpUser:restEmitter" | ||
), | ||
) | ||
|
||
if self.config.semantics == TransformerSemantics.PATCH: | ||
patch_glossary_terms: Optional[ | ||
GlossaryTermsClass | ||
] = TagsToTermMapper._merge_with_server_glossary_terms( | ||
self.ctx.graph, entity_urn, out_glossary_terms | ||
) | ||
return cast(Optional[Aspect], patch_glossary_terms) | ||
else: | ||
return cast(Aspect, out_glossary_terms) |
Oops, something went wrong.