-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import numpy as np | ||
import pandas as pd | ||
|
||
def get_default_hyperparameter(primitive, hyperparameter): | ||
|
||
# check if input legal hyperparameter | ||
hyperparam_buf = list(primitive.metadata.get_hyperparams().defaults().keys()) | ||
hyperparam_input = list(hyperparameter.keys()) | ||
if not set(hyperparam_buf) > set(hyperparam_input): | ||
invalid_hyperparam = list(set(hyperparam_input) - set(hyperparam_buf)) | ||
raise TypeError(primitive.__name__ + ' got unexpected keyword argument ' + str(invalid_hyperparam)) | ||
|
||
hyperparams_class = primitive.metadata.get_hyperparams() | ||
hyperparams = hyperparams_class.defaults() | ||
|
||
if len(hyperparameter.items()) != 0: | ||
hyperparams = hyperparams.replace(hyperparameter) | ||
|
||
return hyperparams | ||
|
||
class BaseSKI: | ||
|
||
def __init__(self, primitive, **hyperparameter): | ||
|
||
self.fit_available = True if 'fit' in primitive.__dict__ else False | ||
self.predict_available = True if 'produce' in primitive.__dict__ else False | ||
self.predict_score_available = True if 'produce_score' in dir(primitive) else False | ||
self.produce_available = True if 'produce' in primitive.__dict__ else False | ||
|
||
hyperparams = get_default_hyperparameter(primitive, hyperparameter) | ||
self.primitives = primitive(hyperparams=hyperparams) | ||
|
||
def _sys_data_check(self, data): | ||
if self.system_num == 1: | ||
if type(data) is np.ndarray and data.ndim == 2: | ||
data = [data] # np.expand_dims(data, axis=0) | ||
else: | ||
raise AttributeError('For system_num = 1, input data should be 2D numpy array.') | ||
elif self.system_num > 1: | ||
if type(data) is list and len(data) == self.system_num: | ||
for ts_data in data: | ||
if type(ts_data) is np.ndarray and ts_data.ndim == 2: | ||
continue | ||
else: | ||
raise AttributeError('For system_num > 1, each element of input list should be 2D numpy arrays.') | ||
else: | ||
raise AttributeError('For system_num > 1, input data should be the list of `system_num` 2D numpy arrays.') | ||
|
||
return data | ||
|
||
def fit(self, data): | ||
|
||
if not self.fit_available: | ||
raise AttributeError('type object ' + self.__class__.__name__ + ' has no attribute \'fit\'') | ||
|
||
data = self._sys_data_check(data) | ||
|
||
for sys_idx, primitive in enumerate(self.primitives): | ||
sys_data = data[sys_idx] | ||
sys_data = self._transform(sys_data) | ||
primitive.set_training_data(inputs=sys_data) | ||
primitive.fit() | ||
|
||
return | ||
|
||
def predict(self, data): | ||
|
||
if not self.predict_available: | ||
raise AttributeError('type object ' + self.__class__.__name__ + ' has no attribute \'predict\'') | ||
|
||
data = self._sys_data_check(data) | ||
output_data = self._forward(data, '_produce') | ||
|
||
return output_data | ||
|
||
def _transform(self, X): #transform the ndarray to d3m dataframe, select columns to use | ||
column_name = [str(col_index) for col_index in range(X.shape[1])] | ||
return pd.DataFrame(X, columns=column_name, generate_metadata=True) |