This project is written by Derek Thomas More interesting technical documentation is held on the github pages
The purpose of this project is to implement research papers. There are a few benefits I hope to achieve:
- Better research literacy
- Better Pytorch/Keras/Tensorflow skills
- Quicker idea to production pipelines
- Independant verification of results
Note: This was inspired by this post by kthx0
- Computer Vision
- Machine Learning
- Data Science
- Python 3.6
- PyTorch
- Possibly Tensorflow/Keras in the future
AlexNet: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
ZFNet: https://arxiv.org/abs/1311.2901
VGG16: https://arxiv.org/abs/1505.06798
ResNet: https://arxiv.org/abs/1704.06904
GoogLeNet: https://arxiv.org/abs/1409.4842
Inception: https://arxiv.org/abs/1512.00567
Xception: https://arxiv.org/abs/1610.02357
MobileNet: https://arxiv.org/abs/1704.04861
FCN: https://arxiv.org/abs/1411.4038
SegNet: https://arxiv.org/abs/1511.00561
UNet: https://arxiv.org/abs/1505.04597
PSPNet: https://arxiv.org/abs/1612.01105
DeepLab: https://arxiv.org/abs/1606.00915
ICNet: https://arxiv.org/abs/1704.08545
ENet: https://arxiv.org/abs/1606.02147
GAN: https://arxiv.org/abs/1406.2661
DCGAN: https://arxiv.org/abs/1511.06434
WGAN: https://arxiv.org/abs/1701.07875
Pix2Pix: https://arxiv.org/abs/1611.07004
CycleGAN: https://arxiv.org/abs/1703.10593
RCNN: https://arxiv.org/abs/1311.2524
Fast-RCNN: https://arxiv.org/abs/1504.08083
Faster-RCNN: https://arxiv.org/abs/1506.01497
SSD: https://arxiv.org/abs/1512.02325
YOLO: https://arxiv.org/abs/1506.02640
YOLO9000: https://arxiv.org/abs/1612.08242
- Clone this repo (for help see this tutorial).
- Raw Data is being kept here within this repo.
- Using the environment of your choice (I use Conda) install requirements.txt
- Feel free to contact me on my github page
Special Thanks for this Readme Template