git clone https://github.com/dceluis/vacocam_render
cd vacocam_render
pip install -r requirements.txt
A valid OpenAI API key is needed, if you want to use the AI supervision.
cp .env.sample .env
Then, add your key to .env
OPENAI_API_KEY="your_api_key"
Rendering a supervised video is a multi-step process.
First, we detect the balls on each frame:
python detect.py --model="./path/to/yolov8.pt" "./path/to/video.mp4"
We can now run the two-step supervision strategies.
- Removing static clusters:
python track.py --tracking="declustered" "./path/to/video.mp4"
- Supervise the video focus using gpt4-vision:
python track.py --tracking="vacocam" "./path/to/video.mp4"
Finally, we can render the video:
python render.py --max-zoom=1.9 --min-zoom=1.2 --max-area=400 --min-area=50 --vacocam "./path/to/video.mp4"