-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Periodic BCs for gray-scott, and interop with Nodax
- Loading branch information
rdes
committed
Mar 14, 2024
1 parent
c6f8253
commit 81bea44
Showing
2 changed files
with
149 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
# %% | ||
%load_ext autoreload | ||
%autoreload 2 | ||
# %load_ext autoreload | ||
# %autoreload 2 | ||
|
||
# %% | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# %% | ||
|
||
""" | ||
Test of the Updec package on the Advection-Diffusion equation with RBFs: | ||
PDE here: https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation | ||
""" | ||
|
||
import time | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
|
||
# jax.config.update('jax_platform_name', 'cpu') | ||
jax.config.update("jax_enable_x64", True) | ||
|
||
from updec import * | ||
# key = jax.random.PRNGKey(13) | ||
key = None | ||
|
||
# from torch.utils.tensorboard import SummaryWriter | ||
|
||
|
||
RUN_NAME = "TempFolder" | ||
DATAFOLDER = "./data/" + RUN_NAME +"/" | ||
make_dir(DATAFOLDER) | ||
|
||
RBF = partial(polyharmonic, a=1) | ||
MAX_DEGREE = 1 | ||
|
||
DT = 1e-4 | ||
NB_TIMESTEPS = 100 | ||
PLOT_EVERY = 10 | ||
|
||
VEL = jnp.array([100.0, 0.0]) | ||
## Diffusive constant | ||
K = 0.08 | ||
|
||
Nx = 40 | ||
Ny = 20 | ||
SUPPORT_SIZE = "max" | ||
|
||
facet_types={"South":"p0", "North":"p0", "West":"p1", "East":"p1"} | ||
cloud = SquareCloud(Nx=Nx, Ny=Ny, facet_types=facet_types, noise_key=key, support_size=SUPPORT_SIZE) | ||
|
||
cloud.visualize_cloud(s=0.1, figsize=(7,3)); | ||
|
||
# print("Local supports:", cloud.local_supports[0]) | ||
|
||
|
||
# %% | ||
|
||
# def my_diff_operator(x, center=None, rbf=None, monomial=None, fields=None): | ||
# val = nodal_value(x, center, rbf, monomial) | ||
# return val | ||
|
||
# def my_rhs_operator(x, centers=None, rbf=None, fields=None): | ||
# lap = value(x, fields[:,0], centers, rbf) | ||
# return lap | ||
|
||
|
||
def my_diff_operator(x, center=None, rbf=None, monomial=None, fields=None): | ||
val = nodal_value(x, center, rbf, monomial) | ||
grad = nodal_gradient(x, center, rbf, monomial) | ||
lap = nodal_laplacian(x, center, rbf, monomial) | ||
return (val/DT) + jnp.dot(VEL, grad) - K*lap | ||
|
||
def my_rhs_operator(x, centers=None, rbf=None, fields=None): | ||
return value(x, fields[:,0], centers, RBF) / DT ## TODO value ? | ||
|
||
|
||
|
||
d_zero = lambda x: 0. | ||
boundary_conditions = {"South":d_zero, "West":d_zero, "North":d_zero, "East":d_zero} | ||
|
||
|
||
## u0 is zero everywhere except at a point in the middle | ||
u0 = jnp.zeros(cloud.N) | ||
source_id = int(cloud.N*0.5) | ||
source_neighbors = jnp.array(cloud.local_supports[source_id][:cloud.N//40]) | ||
u0 = u0.at[source_neighbors].set(0.95) | ||
|
||
|
||
## | ||
|
||
## Begin timestepping for 100 steps | ||
|
||
# fig = plt.figure(figsize=(6,3)) | ||
# ax1= fig.add_subplot(1, 1, 1, projection='3d') | ||
# ax = fig.add_subplot(1, 1, 1) | ||
|
||
|
||
u = u0.copy() | ||
ulist = [u] | ||
|
||
start = time.time() | ||
|
||
for i in range(1, NB_TIMESTEPS+1): | ||
ufield = pde_solver_jit(diff_operator=my_diff_operator, | ||
rhs_operator = my_rhs_operator, | ||
rhs_args=[u], | ||
cloud = cloud, | ||
boundary_conditions = boundary_conditions, | ||
rbf=RBF, | ||
max_degree=MAX_DEGREE,) | ||
|
||
u = ufield.vals | ||
ulist.append(u) | ||
|
||
if i<=3 or i%PLOT_EVERY==0: | ||
print(f"Step {i}") | ||
# plt.cla() | ||
# cloud.visualize_field(u, cmap="jet", projection="3d", title=f"Step {i}") | ||
ax, _ = cloud.visualize_field(u, cmap="jet", title=f"Step {i}", vmin=0, vmax=1, figsize=(6,3),colorbar=False) | ||
# plt.draw() | ||
plt.show() | ||
|
||
|
||
walltime = time.time() - start | ||
|
||
minutes = walltime // 60 % 60 | ||
seconds = walltime % 60 | ||
print(f"Walltime: {minutes} minutes {seconds:.2f} seconds") | ||
|
||
|
||
|
||
# %% | ||
|
||
# ax = plt.gca() | ||
filename = DATAFOLDER + "advection_diffusion_rbf.gif" | ||
cloud.animate_fields([ulist], cmaps="jet", filename=filename, figsize=(7,3), titles=["Advection-Diffusion with RBFs"]) | ||
|
||
|
||
|
||
# %% | ||
|
||
|
||
## Write stuff to tensorboard | ||
# run_name = str(datetime.datetime.now())[:19] ##For tensorboard | ||
# writer = SummaryWriter("runs/"+run_name, comment='-Laplace') | ||
# hparams_dict = {"rbf":RBF.__name__, "max_degree":MAX_DEGREE, "nb_nodes":Nx*Ny, "support_size":SUPPORT_SIZE} | ||
# metrics_dict = {"metrics/mse_error":float(error), "metrics/wall_time":walltime} | ||
# writer.add_hparams(hparams_dict, metrics_dict, run_name="hp_params") | ||
# writer.add_figure("plots", fig) | ||
# writer.flush() | ||
# writer.close() | ||
|
||
# %% |