-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
"""Example of how to use the Koopman operator for control.""" | ||
|
||
import control | ||
import numpy as np | ||
from matplotlib import pyplot as plt | ||
|
||
import pykoop | ||
|
||
plt.rc('lines', linewidth=2) | ||
plt.rc('axes', grid=True) | ||
plt.rc('grid', linestyle='--') | ||
|
||
|
||
def example_control_vdp() -> None: | ||
"""Demonstrate how to use the Koopman operator for control.""" | ||
# Get example Van der Pol data | ||
eg = pykoop.example_data_vdp() | ||
|
||
# Create and fit linear Koopman pipeline | ||
kp_lin = pykoop.KoopmanPipeline( | ||
lifting_functions=None, | ||
regressor=pykoop.Edmd(), | ||
).fit( | ||
eg['X_train'], | ||
n_inputs=eg['n_inputs'], | ||
episode_feature=eg['episode_feature'], | ||
) | ||
|
||
# Create and fit polynomial Koopman pipeline | ||
kp_poly = pykoop.KoopmanPipeline( | ||
lifting_functions=[( | ||
'sp', | ||
pykoop.SplitPipeline( | ||
lifting_functions_state=[ | ||
('pl', pykoop.PolynomialLiftingFn(order=3)) | ||
], | ||
lifting_functions_input=None, | ||
), | ||
)], | ||
regressor=pykoop.Edmd(), | ||
).fit( | ||
eg['X_train'], | ||
n_inputs=eg['n_inputs'], | ||
episode_feature=eg['episode_feature'], | ||
) | ||
|
||
# Extract state-space matrices | ||
U_lin = kp_lin.regressor_.coef_.T | ||
A_lin = U_lin[:, :U_lin.shape[0]] | ||
B_lin = U_lin[:, U_lin.shape[0]:] | ||
U_poly = kp_poly.regressor_.coef_.T | ||
A_poly = U_poly[:, :U_poly.shape[0]] | ||
B_poly = U_poly[:, U_poly.shape[0]:] | ||
|
||
# Set weighting matrices for LQR. Lifted state errors are not weighted | ||
Q_lin = np.eye(2) | ||
R_lin = np.eye(1) | ||
Q_poly = np.diag([1, 1, 0, 0, 0, 0, 0, 0, 0]) | ||
R_poly = np.eye(1) | ||
|
||
# Synthesize discrete LQR controllers using the ``control`` package | ||
K_lin, _, _ = control.dlqr(A_lin, B_lin, Q_lin, R_lin, method='scipy') | ||
K_poly, _, _ = control.dlqr(A_poly, B_poly, Q_poly, R_poly, method='scipy') | ||
|
||
# Set number of timesteps to predict | ||
N = 1000 | ||
# Get dynamic model | ||
vdp = eg['dynamic_model'] | ||
|
||
# Predict ground truth dynamics without control | ||
Xc_gt = np.zeros((N, 2)) | ||
Xc_gt[0, :] = np.array([1, 1]) | ||
for k in range(1, N): | ||
Xc_gt[k, :] = vdp.f(0, Xc_gt[k - 1, :], 0) | ||
|
||
# Predict dynamics with linear controller | ||
Xc_lin = np.zeros((N, 2)) | ||
Uc_lin = np.zeros((N, 1)) | ||
Xc_lin[0, :] = np.array([1, 1]) | ||
for k in range(1, N): | ||
Uc_lin[[k - 1], :] = (-K_lin @ Xc_lin[[k - 1], :].T).T | ||
Xc_lin[k, :] = vdp.f(0, Xc_lin[k - 1, :], Uc_lin[k - 1, :].item()) | ||
|
||
# Predict dynamics with Koopman controller | ||
Xc_poly = np.zeros((N, 2)) | ||
Uc_poly = np.zeros((N, 1)) | ||
Xc_poly[0, :] = np.array([1, 1]) | ||
for k in range(1, N): | ||
lifted_state = kp_poly.lift_state( | ||
Xc_poly[[k - 1], :], | ||
episode_feature=False, | ||
) | ||
Uc_poly[[k - 1], :] = (-K_poly @ lifted_state.T).T | ||
Xc_poly[k, :] = vdp.f(0, Xc_poly[k - 1, :], Uc_poly[k - 1, :].item()) | ||
|
||
# Plot trajectories | ||
fig, ax = plt.subplots() | ||
ax.plot(Xc_gt[:, 0], Xc_gt[:, 1], label='Uncontrolled') | ||
ax.plot(Xc_lin[:, 0], Xc_lin[:, 1], label='Linear LQR') | ||
ax.plot(Xc_poly[:, 0], Xc_poly[:, 1], label='Koopman LQR') | ||
ax.scatter([0], [0], s=50, c='C3', zorder=2, marker='x', label='Target') | ||
ax.set_xlabel('$x_1[k]$') | ||
ax.set_ylabel('$x_2[k]$') | ||
ax.legend(loc='lower right', ncol=2) | ||
ax.set_title('Comparison of linear and Koopman LQR controllers') | ||
|
||
|
||
if __name__ == '__main__': | ||
example_control_vdp() | ||
plt.show() |