This repo implements the ModelNet-40 classification experiments presented in the paper. The experiment involves six architectures:
- PointNet:
models/pointnet.py
. This is directly copied from Pointnet_Pointnet2_pytorch for comparison with Architecture 2. - PointNet_VecKM:
models/pointnet_VecKM.py
. We replace thePointNetEncoder
in the original architecture with our VecKM module. - PointNet2:
models/pointnet2.py
. This is directly copied from Pointnet_Pointnet2_pytorch for comparison with Architecture 4. - PointNet2_VecKM:
models/pointnet2_VecKM.py
. We replace the first set abstraction layer with VecKM. - PCT: Point Cloud Transformer
models/PCT.py
. This is directly copied from PCT_Pytorch for comparison with Architecture 6. - PCT_VecKM:
models/PCT_VecKM.py
We replace the initial point embedding module in PCT with our VecKM.
The data augmentation and training strategies are borrowed from PCT_Pytorch. Many thanks to their great codes!
Please download the data here and unzip the file into ./data/modelnet40_ply_hdf5_2048
. The file structure shall look like:
./
├── data
│ └── modelnet40_ply_hdf5_2048
│ ├── ply_data_test0.h5
│ ├── ply_data_test_0_id2file.json
│ ├── ply_data_test1.h5
│ ├── ply_data_test_1_id2file.json
│ ├── ply_data_train0.h5
│ ├── ply_data_train_0_id2file.json
│ ├── ply_data_train1.h5
│ ├── ply_data_train_1_id2file.json
│ ├── ply_data_train2.h5
│ ├── ply_data_train_2_id2file.json
│ ├── ply_data_train3.h5
│ ├── ply_data_train_3_id2file.json
│ ├── ply_data_train4.h5
│ ├── ply_data_train_4_id2file.json
│ ├── shape_names.txt
│ ├── test_files.txt
│ └── train_files.txt
├── data.py
├── main.py
├── models
│ ├── pointnet.py
│ ├── pointnet_VecKM.py
│ ├── pointnet2.py
│ ├── pointnet2_VecKM.py
│ ├── PCT.py
│ ├── PCT_VecKM.py
├── README.md
└── util.py
python >= 3.8
pytorch >= 1.9
h5py
scikit-learn
scipy
We get the following accuracies by setting random seed as 0. Different GPUs will produce different results. My result is given by an RTXA5000 GPU.
Instance Accuracy | Avg. Class Accuracy | Inference Time (1 batch) | # parameters | |
---|---|---|---|---|
PointNet | 90.8% | 87.1% | 3.03 ms | 1.61M |
PointNet + VecKM | 92.9% (+2.1%) | 89.7% (+2.6%) | 14.3 ms | 9.06M |
PointNet2 | 92.8% | 89.4% | 117 ms | 1.48M |
PointNet2 + VecKM | 93.0% (+0.2%) | 89.7% (+0.3%) | 65.8 ms (78% faster) | 3.94M |
PCT | 92.5% | 89.2% | 149.72 ms | 2.88M |
PCT + VecKM | 93.0% (+0.5%) | 90.5% (+1.3%) | 21.4 (6x faster) | 5.07M |
python main.py --model pointnet
python main.py --model pointnet_VecKM
python main.py --model pointnet2
python main.py --model pointnet2_VecKM
python main.py --model PCT
python main.py --model PCT_VecKM