-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
update mix.ep50.pth, mix.iter500.pth and train_config.json #126
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
QG-phy
added a commit
that referenced
this pull request
Apr 21, 2024
* Dev (#125) * update workflow and install method. * build(deps): update pyproject.toml * build(deps): update pyproject.toml * chore: delete release-check.md * ci: update publish-to-pypi.yml * Update pyproject.toml * Update pyproject.toml * update mix.ep50.pth, mix.iter500.pth and train_config.json (#126) * update h-BN example, ckpt and the related doc. (#127) * update mix.ep50.pth, mix.iter500.pth and train_config.json * update hBN example * docs: update hands_on.md * update run.py: (#128) * update run.py: support change device and dtype when postprocess the model * update argcheck.py * update argcheck.py * add E3 features (node/edge) to hamiltonian/density blocks (#129) * stack changes * fix test ham to feature * update write block function in command line (#132) * update write block * update task naming for each mdoel * feat(dftb): add support sk params from dftb skf files . (#133) * add xitorch interp1d * feat: create dptb/utils/_xitorch/__init__.py * update C_chain example * add sk * read skfile and load sk para * update sk_param.py * update onsite.py: add support load onsite E from the dftb skf files. * update sk_param.py * update sk_param.py * add hopping dptb * add core for dftb support. * update sk_param.py: make the outof skparams in the same format as nnsk model parameters. * update dftbsk.py: make the skparas from skf files in the same style of nnsk. * update hopping_dptb.py * update onsite.py * update dftbsk.py and nnsk.py * add new mix type: dftb + nnenv * update build.py * update build.py and dftbsk.py * update deeptb.py * add build_model for dftbsk and dftbsk+nnenv two new mode. * add hBN dftb example * fix(SKParam): Update SKParam class to handle missing keys in skdict and raise appropriate errors. Add unit tests for SKParam class. * feat(train): Add skints loss function for training with nnsk model * test(hopping_dptb): Update dftb/hopping_dptb.py and add test_dftbsk.py * test(build_model): Update deeptb.py and test_build_model.py with dftbsk changes * test: Refactor test_build_model.py to remove unnecessary blank lines and add validation for model_options in test_build_model_failure() * update deeptb.py * test(test_sktb): to add new tests for dftbsk and nnsk models * 📃 docs(dftb): Update hBN_dftb example with new data and input files * Update deeptb.py * Update SE2Aggregation class in se2.py to use the last 4 columns of x instead of the last 3 columns. Update _SE2Descriptor class in se2.py to set the flow parameter to "target_to_source". and add radial info into env matrix (#135) * feat(command): add cskf command to collect the skfiles into a pth database (#134) * add xitorch interp1d * feat: create dptb/utils/_xitorch/__init__.py * update C_chain example * add sk * read skfile and load sk para * update sk_param.py * update onsite.py: add support load onsite E from the dftb skf files. * update sk_param.py * update sk_param.py * add hopping dptb * add core for dftb support. * update sk_param.py: make the outof skparams in the same format as nnsk model parameters. * update dftbsk.py: make the skparas from skf files in the same style of nnsk. * update hopping_dptb.py * update onsite.py * update dftbsk.py and nnsk.py * add new mix type: dftb + nnenv * update build.py * update build.py and dftbsk.py * update deeptb.py * add build_model for dftbsk and dftbsk+nnenv two new mode. * add hBN dftb example * fix(SKParam): Update SKParam class to handle missing keys in skdict and raise appropriate errors. Add unit tests for SKParam class. * feat(train): Add skints loss function for training with nnsk model * test(hopping_dptb): Update dftb/hopping_dptb.py and add test_dftbsk.py * test(build_model): Update deeptb.py and test_build_model.py with dftbsk changes * test: Refactor test_build_model.py to remove unnecessary blank lines and add validation for model_options in test_build_model_failure() * update deeptb.py * test(test_sktb): to add new tests for dftbsk and nnsk models * 📃 docs(dftb): Update hBN_dftb example with new data and input files * 🦄 refactor(SKParam): Update SKParam class to include HubdU and Occu in skdict * Update deeptb.py * ✨ feat(cskf): Add collectskf.py to collect sktb params from sk files * 🧪 test(csfk): update test_skparam to add unit test for cskf command * 📃 docs(dftb): add docs about dftb example into index.rst * Fix bugs in SE2Aggregation and _SE2Descriptor classes * add example mos2 * update hBN example * fix(se2): update the smooth function in getting env descriptor (#136) * 🐞 fix(se2): update the smooth function in getting env descriptor * test: update test_emb_se2.py * test: update test_emb_se2.py * Update version 2.0.1 in pyproject.toml --------- Co-authored-by: Yinzhanghao Zhou <64253517+floatingCatty@users.noreply.github.com>
QG-phy
added a commit
that referenced
this pull request
May 6, 2024
* Dev (#125) * update workflow and install method. * build(deps): update pyproject.toml * build(deps): update pyproject.toml * chore: delete release-check.md * ci: update publish-to-pypi.yml * Update pyproject.toml * Update pyproject.toml * update mix.ep50.pth, mix.iter500.pth and train_config.json (#126) * update h-BN example, ckpt and the related doc. (#127) * update mix.ep50.pth, mix.iter500.pth and train_config.json * update hBN example * docs: update hands_on.md * update run.py: (#128) * update run.py: support change device and dtype when postprocess the model * update argcheck.py * update argcheck.py * add E3 features (node/edge) to hamiltonian/density blocks (#129) * stack changes * fix test ham to feature * update write block function in command line (#132) * update write block * update task naming for each mdoel * feat(dftb): add support sk params from dftb skf files . (#133) * add xitorch interp1d * feat: create dptb/utils/_xitorch/__init__.py * update C_chain example * add sk * read skfile and load sk para * update sk_param.py * update onsite.py: add support load onsite E from the dftb skf files. * update sk_param.py * update sk_param.py * add hopping dptb * add core for dftb support. * update sk_param.py: make the outof skparams in the same format as nnsk model parameters. * update dftbsk.py: make the skparas from skf files in the same style of nnsk. * update hopping_dptb.py * update onsite.py * update dftbsk.py and nnsk.py * add new mix type: dftb + nnenv * update build.py * update build.py and dftbsk.py * update deeptb.py * add build_model for dftbsk and dftbsk+nnenv two new mode. * add hBN dftb example * fix(SKParam): Update SKParam class to handle missing keys in skdict and raise appropriate errors. Add unit tests for SKParam class. * feat(train): Add skints loss function for training with nnsk model * test(hopping_dptb): Update dftb/hopping_dptb.py and add test_dftbsk.py * test(build_model): Update deeptb.py and test_build_model.py with dftbsk changes * test: Refactor test_build_model.py to remove unnecessary blank lines and add validation for model_options in test_build_model_failure() * update deeptb.py * test(test_sktb): to add new tests for dftbsk and nnsk models * 📃 docs(dftb): Update hBN_dftb example with new data and input files * Update deeptb.py * Update SE2Aggregation class in se2.py to use the last 4 columns of x instead of the last 3 columns. Update _SE2Descriptor class in se2.py to set the flow parameter to "target_to_source". and add radial info into env matrix (#135) * feat(command): add cskf command to collect the skfiles into a pth database (#134) * add xitorch interp1d * feat: create dptb/utils/_xitorch/__init__.py * update C_chain example * add sk * read skfile and load sk para * update sk_param.py * update onsite.py: add support load onsite E from the dftb skf files. * update sk_param.py * update sk_param.py * add hopping dptb * add core for dftb support. * update sk_param.py: make the outof skparams in the same format as nnsk model parameters. * update dftbsk.py: make the skparas from skf files in the same style of nnsk. * update hopping_dptb.py * update onsite.py * update dftbsk.py and nnsk.py * add new mix type: dftb + nnenv * update build.py * update build.py and dftbsk.py * update deeptb.py * add build_model for dftbsk and dftbsk+nnenv two new mode. * add hBN dftb example * fix(SKParam): Update SKParam class to handle missing keys in skdict and raise appropriate errors. Add unit tests for SKParam class. * feat(train): Add skints loss function for training with nnsk model * test(hopping_dptb): Update dftb/hopping_dptb.py and add test_dftbsk.py * test(build_model): Update deeptb.py and test_build_model.py with dftbsk changes * test: Refactor test_build_model.py to remove unnecessary blank lines and add validation for model_options in test_build_model_failure() * update deeptb.py * test(test_sktb): to add new tests for dftbsk and nnsk models * 📃 docs(dftb): Update hBN_dftb example with new data and input files * 🦄 refactor(SKParam): Update SKParam class to include HubdU and Occu in skdict * Update deeptb.py * ✨ feat(cskf): Add collectskf.py to collect sktb params from sk files * 🧪 test(csfk): update test_skparam to add unit test for cskf command * 📃 docs(dftb): add docs about dftb example into index.rst * Fix bugs in SE2Aggregation and _SE2Descriptor classes * add example mos2 * update hBN example * fix(se2): update the smooth function in getting env descriptor (#136) * 🐞 fix(se2): update the smooth function in getting env descriptor * test: update test_emb_se2.py * test: update test_emb_se2.py * Update version 2.0.1 in pyproject.toml * Fix(nnsk): NNSK class in nnsk.py to use the get() method when accessing the full orbital (#139) * Update NNSK class in nnsk.py to use the get() method when accessing values in the full_basis_to_basis dictionary. * fix digital error in test_emb_se2 * temp * Update(nnsk): automatic orthogonalization (#141) * fix(data): fix the bug in dm parse (#142) * Update(nnsk): automatic orthogonalization * update DM parse * feat:add support to pass kpoints np.array to get band eigenvalues. (#145) * feat: create toskint.ipynb * feat:add support to pass kpoints nparray to get band eigenvalues. * feat(curve_fitting.py): develop a curve fitting function that converts the dftb model to nnsk (#146) * update fitting dftb * add(dftb2nnsk): develop fitting class for converting dftb to nnsk model * remove(curve-fitting.ipynb): remove the notebook for development * fix test split * add(test_dftb2nnsk): add simple test for dftb2nnsk class * temp * fix test * fix(nnsk): fix device type errpr in to json function * rename hopping_dptb to hopping_dftb * temp * align inferences * update decaying function * remove rc from dftb2nnsk * fix test nrl * fix test nrl * update argcheck * update dftb2nnsk.py * update argcheck * update read_NRL_tojson.py --------- Co-authored-by: qqgu <guqq_phy@qq.com> * feat(data): add parse md trajectory of abacus (#144) * update abacus parse md * fix(default_dataset): The natom and nframe default setting * shift the 'pos‘ position in test default dataset * fix lattice constant transform * update parse_abacus_md * update abacus.py * update abacus.py * update parse abacus scf lattice constant --------- Co-authored-by: qqgu <guqq_phy@qq.com> * style: optmize the import of each submodule (#154) * data import * optimize imports * fix: idp(data) in nnsk and deeptb, and refactor soc switch in hr2hk (#152) * refactor: plotting code in dftb2nnsk.py fix push_decay method and update push options (#156) * Refactor plotting code in dftb2nnsk.py * refactor(nnsk): Refactor NNSK class in nnsk.py to fix push_decay method and update push options * update saver.py to save ckpt with name of ovlp * fix: update nnsk from reference and change the sign of ovp_thr * update saver.py * update mos2 example * Update test_sktb.py with new model weights and fix init_model path in test_md * docs: Update dftb.md with hBN model training steps and fix formatting (#157) * docs: Update dftb.md with hBN model training steps and fix formatting * Bump actions/setup-python from 4 to 5 (#131) Bumps [actions/setup-python](https://github.com/actions/setup-python) from 4 to 5. - [Release notes](https://github.com/actions/setup-python/releases) - [Commits](actions/setup-python@v4...v5) --- updated-dependencies: - dependency-name: actions/setup-python dependency-type: direct:production update-type: version-update:semver-major ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * Bump actions/checkout from 3 to 4 (#130) Bumps [actions/checkout](https://github.com/actions/checkout) from 3 to 4. - [Release notes](https://github.com/actions/checkout/releases) - [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md) - [Commits](actions/checkout@v3...v4) --- updated-dependencies: - dependency-name: actions/checkout dependency-type: direct:production update-type: version-update:semver-major ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * feat: add -v to get dptb version, and update the version.py to load version number and git version (#158) * Refactor plotting code in dftb2nnsk.py * refactor(nnsk): Refactor NNSK class in nnsk.py to fix push_decay method and update push options * update saver.py to save ckpt with name of ovlp * fix: update nnsk from reference and change the sign of ovp_thr * update saver.py * update mos2 example * Update test_sktb.py with new model weights and fix init_model path in test_md * docs: Update dftb.md with hBN model training steps and fix formatting * Refactor main.py to add version flag and handle unknown version * Update pyproject.toml to add toml dependency * feat: update pyproject.toml and __init__.py to automatically get the version number. (#160) * Refactor plotting code in dftb2nnsk.py * refactor(nnsk): Refactor NNSK class in nnsk.py to fix push_decay method and update push options * update saver.py to save ckpt with name of ovlp * fix: update nnsk from reference and change the sign of ovp_thr * update saver.py * update mos2 example * Update test_sktb.py with new model weights and fix init_model path in test_md * docs: Update dftb.md with hBN model training steps and fix formatting * Refactor main.py to add version flag and handle unknown version * Update pyproject.toml to add toml dependency * update pyproject.toml and add -v command * update ut.sh * update unit_test.yml and ut.sh * ci: update unit_test.yml * ci: update unit_test.yml * ci: update unit_test.yml * ci: update unit_test.yml * ci: update unit_test.yml * ci: update unit_test.yml * build(deps): update 2 files and delete 1 file * ci: update devcontainer.yml * ci: update devcontainer.yml * ci: update devcontainer.yml * ci: update devcontainer.yml * ci: update devcontainer.yml * back to main * Update devcontainer.yml and unit_test.yml workflows --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: Yinzhanghao Zhou <64253517+floatingCatty@users.noreply.github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.