-
Notifications
You must be signed in to change notification settings - Fork 520
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
While a DPModel cannot be directly trained, it can be converted from another model: ```sh dp convert-backend frozen_model.pth frozen_model.dp dp test -m frozen_model.dp -s ../data/ ``` The energy result is consistent with TF and PT. Force and virial are NaN, as expected. Signed-off-by: Jinzhe Zeng <jinzhe.zeng@rutgers.edu>
- Loading branch information
Showing
5 changed files
with
410 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,372 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
from typing import ( | ||
TYPE_CHECKING, | ||
Any, | ||
Callable, | ||
Dict, | ||
List, | ||
Optional, | ||
Tuple, | ||
Type, | ||
Union, | ||
) | ||
|
||
import numpy as np | ||
|
||
from deepmd.dpmodel.model.dp_model import ( | ||
DPModel, | ||
) | ||
from deepmd.dpmodel.output_def import ( | ||
ModelOutputDef, | ||
OutputVariableCategory, | ||
OutputVariableDef, | ||
) | ||
from deepmd.dpmodel.utils.batch_size import ( | ||
AutoBatchSize, | ||
) | ||
from deepmd.dpmodel.utils.network import ( | ||
load_dp_model, | ||
) | ||
from deepmd.infer.deep_dipole import ( | ||
DeepDipole, | ||
) | ||
from deepmd.infer.deep_dos import ( | ||
DeepDOS, | ||
) | ||
from deepmd.infer.deep_eval import DeepEval as DeepEvalWrapper | ||
from deepmd.infer.deep_eval import ( | ||
DeepEvalBackend, | ||
) | ||
from deepmd.infer.deep_polar import ( | ||
DeepPolar, | ||
) | ||
from deepmd.infer.deep_pot import ( | ||
DeepPot, | ||
) | ||
from deepmd.infer.deep_wfc import ( | ||
DeepWFC, | ||
) | ||
|
||
if TYPE_CHECKING: | ||
import ase.neighborlist | ||
|
||
|
||
class DeepEval(DeepEvalBackend): | ||
"""NumPy backend implementaion of DeepEval. | ||
Parameters | ||
---------- | ||
model_file : Path | ||
The name of the frozen model file. | ||
output_def : ModelOutputDef | ||
The output definition of the model. | ||
*args : list | ||
Positional arguments. | ||
auto_batch_size : bool or int or AutomaticBatchSize, default: False | ||
If True, automatic batch size will be used. If int, it will be used | ||
as the initial batch size. | ||
neighbor_list : ase.neighborlist.NewPrimitiveNeighborList, optional | ||
The ASE neighbor list class to produce the neighbor list. If None, the | ||
neighbor list will be built natively in the model. | ||
**kwargs : dict | ||
Keyword arguments. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
model_file: str, | ||
output_def: ModelOutputDef, | ||
*args: List[Any], | ||
auto_batch_size: Union[bool, int, AutoBatchSize] = True, | ||
neighbor_list: Optional["ase.neighborlist.NewPrimitiveNeighborList"] = None, | ||
**kwargs: Dict[str, Any], | ||
): | ||
self.output_def = output_def | ||
self.model_path = model_file | ||
|
||
model_data = load_dp_model(model_file) | ||
self.dp = DPModel.deserialize(model_data["model"]) | ||
self.rcut = self.dp.get_rcut() | ||
self.type_map = self.dp.get_type_map() | ||
if isinstance(auto_batch_size, bool): | ||
if auto_batch_size: | ||
self.auto_batch_size = AutoBatchSize() | ||
else: | ||
self.auto_batch_size = None | ||
elif isinstance(auto_batch_size, int): | ||
self.auto_batch_size = AutoBatchSize(auto_batch_size) | ||
elif isinstance(auto_batch_size, AutoBatchSize): | ||
self.auto_batch_size = auto_batch_size | ||
else: | ||
raise TypeError("auto_batch_size should be bool, int, or AutoBatchSize") | ||
|
||
def get_rcut(self) -> float: | ||
"""Get the cutoff radius of this model.""" | ||
return self.rcut | ||
|
||
def get_ntypes(self) -> int: | ||
"""Get the number of atom types of this model.""" | ||
return len(self.type_map) | ||
|
||
def get_type_map(self) -> List[str]: | ||
"""Get the type map (element name of the atom types) of this model.""" | ||
return self.type_map | ||
|
||
def get_dim_fparam(self) -> int: | ||
"""Get the number (dimension) of frame parameters of this DP.""" | ||
return self.dp.get_dim_fparam() | ||
|
||
def get_dim_aparam(self) -> int: | ||
"""Get the number (dimension) of atomic parameters of this DP.""" | ||
return self.dp.get_dim_aparam() | ||
|
||
@property | ||
def model_type(self) -> Type["DeepEvalWrapper"]: | ||
"""The the evaluator of the model type.""" | ||
model_type = self.dp.model_output_type() | ||
if model_type == "energy": | ||
return DeepPot | ||
elif model_type == "dos": | ||
return DeepDOS | ||
elif model_type == "dipole": | ||
return DeepDipole | ||
elif model_type == "polar": | ||
return DeepPolar | ||
elif model_type == "wfc": | ||
return DeepWFC | ||
else: | ||
raise RuntimeError("Unknown model type") | ||
|
||
def get_sel_type(self) -> List[int]: | ||
"""Get the selected atom types of this model. | ||
Only atoms with selected atom types have atomic contribution | ||
to the result of the model. | ||
If returning an empty list, all atom types are selected. | ||
""" | ||
return self.dp.get_sel_type() | ||
|
||
def get_numb_dos(self) -> int: | ||
"""Get the number of DOS.""" | ||
return 0 | ||
|
||
def get_has_efield(self): | ||
"""Check if the model has efield.""" | ||
return False | ||
|
||
def get_ntypes_spin(self): | ||
"""Get the number of spin atom types of this model.""" | ||
return 0 | ||
|
||
def eval( | ||
self, | ||
coords: np.ndarray, | ||
cells: np.ndarray, | ||
atom_types: np.ndarray, | ||
atomic: bool = False, | ||
fparam: Optional[np.ndarray] = None, | ||
aparam: Optional[np.ndarray] = None, | ||
**kwargs: Dict[str, Any], | ||
) -> Dict[str, np.ndarray]: | ||
"""Evaluate the energy, force and virial by using this DP. | ||
Parameters | ||
---------- | ||
coords | ||
The coordinates of atoms. | ||
The array should be of size nframes x natoms x 3 | ||
cells | ||
The cell of the region. | ||
If None then non-PBC is assumed, otherwise using PBC. | ||
The array should be of size nframes x 9 | ||
atom_types | ||
The atom types | ||
The list should contain natoms ints | ||
atomic | ||
Calculate the atomic energy and virial | ||
fparam | ||
The frame parameter. | ||
The array can be of size : | ||
- nframes x dim_fparam. | ||
- dim_fparam. Then all frames are assumed to be provided with the same fparam. | ||
aparam | ||
The atomic parameter | ||
The array can be of size : | ||
- nframes x natoms x dim_aparam. | ||
- natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. | ||
- dim_aparam. Then all frames and atoms are provided with the same aparam. | ||
**kwargs | ||
Other parameters | ||
Returns | ||
------- | ||
output_dict : dict | ||
The output of the evaluation. The keys are the names of the output | ||
variables, and the values are the corresponding output arrays. | ||
""" | ||
if fparam is not None or aparam is not None: | ||
raise NotImplementedError | ||
# convert all of the input to numpy array | ||
atom_types = np.array(atom_types, dtype=np.int32) | ||
coords = np.array(coords) | ||
if cells is not None: | ||
cells = np.array(cells) | ||
natoms, numb_test = self._get_natoms_and_nframes( | ||
coords, atom_types, len(atom_types.shape) > 1 | ||
) | ||
request_defs = self._get_request_defs(atomic) | ||
out = self._eval_func(self._eval_model, numb_test, natoms)( | ||
coords, cells, atom_types, request_defs | ||
) | ||
return dict( | ||
zip( | ||
[x.name for x in request_defs], | ||
out, | ||
) | ||
) | ||
|
||
def _get_request_defs(self, atomic: bool) -> List[OutputVariableDef]: | ||
"""Get the requested output definitions. | ||
When atomic is True, all output_def are requested. | ||
When atomic is False, only energy (tensor), force, and virial | ||
are requested. | ||
Parameters | ||
---------- | ||
atomic : bool | ||
Whether to request the atomic output. | ||
Returns | ||
------- | ||
list[OutputVariableDef] | ||
The requested output definitions. | ||
""" | ||
if atomic: | ||
return list(self.output_def.var_defs.values()) | ||
else: | ||
return [ | ||
x | ||
for x in self.output_def.var_defs.values() | ||
if x.category | ||
in ( | ||
OutputVariableCategory.REDU, | ||
OutputVariableCategory.DERV_R, | ||
OutputVariableCategory.DERV_C_REDU, | ||
) | ||
] | ||
|
||
def _eval_func(self, inner_func: Callable, numb_test: int, natoms: int) -> Callable: | ||
"""Wrapper method with auto batch size. | ||
Parameters | ||
---------- | ||
inner_func : Callable | ||
the method to be wrapped | ||
numb_test : int | ||
number of tests | ||
natoms : int | ||
number of atoms | ||
Returns | ||
------- | ||
Callable | ||
the wrapper | ||
""" | ||
if self.auto_batch_size is not None: | ||
|
||
def eval_func(*args, **kwargs): | ||
return self.auto_batch_size.execute_all( | ||
inner_func, numb_test, natoms, *args, **kwargs | ||
) | ||
|
||
else: | ||
eval_func = inner_func | ||
return eval_func | ||
|
||
def _get_natoms_and_nframes( | ||
self, | ||
coords: np.ndarray, | ||
atom_types: np.ndarray, | ||
mixed_type: bool = False, | ||
) -> Tuple[int, int]: | ||
if mixed_type: | ||
natoms = len(atom_types[0]) | ||
else: | ||
natoms = len(atom_types) | ||
if natoms == 0: | ||
assert coords.size == 0 | ||
else: | ||
coords = np.reshape(np.array(coords), [-1, natoms * 3]) | ||
nframes = coords.shape[0] | ||
return natoms, nframes | ||
|
||
def _eval_model( | ||
self, | ||
coords: np.ndarray, | ||
cells: Optional[np.ndarray], | ||
atom_types: np.ndarray, | ||
request_defs: List[OutputVariableDef], | ||
): | ||
model = self.dp | ||
|
||
nframes = coords.shape[0] | ||
if len(atom_types.shape) == 1: | ||
natoms = len(atom_types) | ||
atom_types = np.tile(atom_types, nframes).reshape(nframes, -1) | ||
else: | ||
natoms = len(atom_types[0]) | ||
|
||
coord_input = coords.reshape([-1, natoms, 3]) | ||
type_input = atom_types | ||
if cells is not None: | ||
box_input = cells.reshape([-1, 3, 3]) | ||
else: | ||
box_input = None | ||
|
||
do_atomic_virial = any( | ||
x.category == OutputVariableCategory.DERV_C_REDU for x in request_defs | ||
) | ||
batch_output = model( | ||
coord_input, type_input, box=box_input, do_atomic_virial=do_atomic_virial | ||
) | ||
if isinstance(batch_output, tuple): | ||
batch_output = batch_output[0] | ||
|
||
results = [] | ||
for odef in request_defs: | ||
# it seems not doing conversion | ||
# dp_name = self._OUTDEF_DP2BACKEND[odef.name] | ||
dp_name = odef.name | ||
if dp_name in batch_output: | ||
shape = self._get_output_shape(odef, nframes, natoms) | ||
if batch_output[dp_name] is not None: | ||
out = batch_output[dp_name].reshape(shape) | ||
else: | ||
out = np.full(shape, np.nan) | ||
results.append(out) | ||
else: | ||
shape = self._get_output_shape(odef, nframes, natoms) | ||
results.append(np.full(np.abs(shape), np.nan)) # this is kinda hacky | ||
return tuple(results) | ||
|
||
def _get_output_shape(self, odef, nframes, natoms): | ||
if odef.category == OutputVariableCategory.DERV_C_REDU: | ||
# virial | ||
return [nframes, *odef.shape[:-1], 9] | ||
elif odef.category == OutputVariableCategory.REDU: | ||
# energy | ||
return [nframes, *odef.shape, 1] | ||
elif odef.category == OutputVariableCategory.DERV_C: | ||
# atom_virial | ||
return [nframes, *odef.shape[:-1], natoms, 9] | ||
elif odef.category == OutputVariableCategory.DERV_R: | ||
# force | ||
return [nframes, *odef.shape[:-1], natoms, 3] | ||
elif odef.category == OutputVariableCategory.OUT: | ||
# atom_energy, atom_tensor | ||
# Something wrong here? | ||
# return [nframes, *shape, natoms, 1] | ||
return [nframes, natoms, *odef.shape, 1] | ||
else: | ||
raise RuntimeError("unknown category") |
Oops, something went wrong.