Skip to content

Commit

Permalink
Merge branch 'devel' into refactor_update_sel2
Browse files Browse the repository at this point in the history
  • Loading branch information
njzjz committed May 30, 2024
2 parents a583c89 + 8de0aba commit af82658
Show file tree
Hide file tree
Showing 22 changed files with 2,078 additions and 88 deletions.
4 changes: 4 additions & 0 deletions deepmd/dpmodel/descriptor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,14 @@
from .se_r import (
DescrptSeR,
)
from .se_t import (
DescrptSeT,
)

__all__ = [
"DescrptSeA",
"DescrptSeR",
"DescrptSeT",
"DescrptDPA1",
"DescrptDPA2",
"DescrptHybrid",
Expand Down
362 changes: 362 additions & 0 deletions deepmd/dpmodel/descriptor/se_t.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,362 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import itertools

import numpy as np

from deepmd.dpmodel.utils.update_sel import (
UpdateSel,
)
from deepmd.env import (
GLOBAL_NP_FLOAT_PRECISION,
)
from deepmd.utils.path import (
DPPath,
)
from deepmd.utils.version import (
check_version_compatibility,
)

try:
from deepmd._version import version as __version__
except ImportError:
__version__ = "unknown"

import copy
from typing import (
List,
Optional,
Tuple,
)

from deepmd.dpmodel import (
DEFAULT_PRECISION,
PRECISION_DICT,
NativeOP,
)
from deepmd.dpmodel.utils import (
EmbeddingNet,
EnvMat,
NetworkCollection,
PairExcludeMask,
)

from .base_descriptor import (
BaseDescriptor,
)


@BaseDescriptor.register("se_e3")
@BaseDescriptor.register("se_at")
@BaseDescriptor.register("se_a_3be")
class DescrptSeT(NativeOP, BaseDescriptor):
r"""DeepPot-SE constructed from all information (both angular and radial) of atomic
configurations.
The embedding takes angles between two neighboring atoms as input.
Parameters
----------
rcut : float
The cut-off radius
rcut_smth : float
From where the environment matrix should be smoothed
sel : list[int]
sel[i] specifies the maxmum number of type i atoms in the cut-off radius
neuron : list[int]
Number of neurons in each hidden layers of the embedding net
resnet_dt : bool
Time-step `dt` in the resnet construction:
y = x + dt * \phi (Wx + b)
set_davg_zero : bool
Set the shift of embedding net input to zero.
activation_function : str
The activation function in the embedding net. Supported options are |ACTIVATION_FN|
env_protection : float
Protection parameter to prevent division by zero errors during environment matrix calculations.
exclude_types : List[List[int]]
The excluded pairs of types which have no interaction with each other.
For example, `[[0, 1]]` means no interaction between type 0 and type 1.
precision : str
The precision of the embedding net parameters. Supported options are |PRECISION|
trainable : bool
If the weights of embedding net are trainable.
seed : int, Optional
Random seed for initializing the network parameters.
"""

def __init__(
self,
rcut: float,
rcut_smth: float,
sel: List[int],
neuron: List[int] = [24, 48, 96],
resnet_dt: bool = False,
set_davg_zero: bool = False,
activation_function: str = "tanh",
env_protection: float = 0.0,
exclude_types: List[Tuple[int, int]] = [],
precision: str = DEFAULT_PRECISION,
trainable: bool = True,
seed: Optional[int] = None,
) -> None:
self.rcut = rcut
self.rcut_smth = rcut_smth
self.sel = sel
self.neuron = neuron
self.filter_neuron = self.neuron
self.set_davg_zero = set_davg_zero
self.activation_function = activation_function
self.precision = precision
self.prec = PRECISION_DICT[self.precision]
self.resnet_dt = resnet_dt
self.env_protection = env_protection
self.ntypes = len(sel)
self.seed = seed
# order matters, placed after the assignment of self.ntypes
self.reinit_exclude(exclude_types)
self.trainable = trainable

in_dim = 1 # not considiering type embedding
self.embeddings = NetworkCollection(
ntypes=self.ntypes,
ndim=2,
network_type="embedding_network",
)
for embedding_idx in itertools.product(
range(self.ntypes), repeat=self.embeddings.ndim
):
self.embeddings[embedding_idx] = EmbeddingNet(
in_dim,
self.neuron,
self.activation_function,
self.resnet_dt,
self.precision,
)
self.env_mat = EnvMat(self.rcut, self.rcut_smth, protection=self.env_protection)
self.nnei = np.sum(self.sel)
self.davg = np.zeros(
[self.ntypes, self.nnei, 4], dtype=PRECISION_DICT[self.precision]
)
self.dstd = np.ones(
[self.ntypes, self.nnei, 4], dtype=PRECISION_DICT[self.precision]
)
self.orig_sel = self.sel

def __setitem__(self, key, value):
if key in ("avg", "data_avg", "davg"):
self.davg = value
elif key in ("std", "data_std", "dstd"):
self.dstd = value
else:
raise KeyError(key)

def __getitem__(self, key):
if key in ("avg", "data_avg", "davg"):
return self.davg
elif key in ("std", "data_std", "dstd"):
return self.dstd
else:
raise KeyError(key)

@property
def dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.get_dim_out()

def get_dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.neuron[-1]

def get_dim_emb(self):
"""Returns the embedding (g2) dimension of this descriptor."""
return self.neuron[-1]

def get_rcut(self):
"""Returns cutoff radius."""
return self.rcut

def get_rcut_smth(self) -> float:
"""Returns the radius where the neighbor information starts to smoothly decay to 0."""
return self.rcut_smth

def get_sel(self):
"""Returns cutoff radius."""
return self.sel

def mixed_types(self):
"""Returns if the descriptor requires a neighbor list that distinguish different
atomic types or not.
"""
return False

def get_env_protection(self) -> float:
"""Returns the protection of building environment matrix."""
return self.env_protection

def share_params(self, base_class, shared_level, resume=False):
"""
Share the parameters of self to the base_class with shared_level during multitask training.
If not start from checkpoint (resume is False),
some seperated parameters (e.g. mean and stddev) will be re-calculated across different classes.
"""
raise NotImplementedError

def get_ntypes(self) -> int:
"""Returns the number of element types."""
return self.ntypes

def compute_input_stats(self, merged: List[dict], path: Optional[DPPath] = None):
"""Update mean and stddev for descriptor elements."""
raise NotImplementedError

def reinit_exclude(
self,
exclude_types: List[Tuple[int, int]] = [],
):
self.exclude_types = exclude_types
self.emask = PairExcludeMask(self.ntypes, exclude_types=exclude_types)

def call(
self,
coord_ext,
atype_ext,
nlist,
mapping: Optional[np.ndarray] = None,
):
"""Compute the descriptor.
Parameters
----------
coord_ext
The extended coordinates of atoms. shape: nf x (nallx3)
atype_ext
The extended aotm types. shape: nf x nall
nlist
The neighbor list. shape: nf x nloc x nnei
mapping
The index mapping from extended to lcoal region. not used by this descriptor.
Returns
-------
descriptor
The descriptor. shape: nf x nloc x ng
gr
The rotationally equivariant and permutationally invariant single particle
representation.
This descriptor returns None.
g2
The rotationally invariant pair-partical representation.
This descriptor returns None.
h2
The rotationally equivariant pair-partical representation.
This descriptor returns None.
sw
The smooth switch function.
"""
del mapping
# nf x nloc x nnei x 4
rr, diff, ww = self.env_mat.call(
coord_ext, atype_ext, nlist, self.davg, self.dstd
)
nf, nloc, nnei, _ = rr.shape
sec = np.append([0], np.cumsum(self.sel))

ng = self.neuron[-1]
result = np.zeros([nf * nloc, ng], dtype=PRECISION_DICT[self.precision])
exclude_mask = self.emask.build_type_exclude_mask(nlist, atype_ext)
# merge nf and nloc axis, so for type_one_side == False,
# we don't require atype is the same in all frames
exclude_mask = exclude_mask.reshape(nf * nloc, nnei)
rr = rr.reshape(nf * nloc, nnei, 4)

for embedding_idx in itertools.product(
range(self.ntypes), repeat=self.embeddings.ndim
):
ti, tj = embedding_idx
nei_type_i = self.sel[ti]
nei_type_j = self.sel[tj]
if ti <= tj:
# avoid repeat calculation
# nfnl x nt_i x 3
rr_i = rr[:, sec[ti] : sec[ti + 1], 1:]
mm_i = exclude_mask[:, sec[ti] : sec[ti + 1]]
rr_i = rr_i * mm_i[:, :, None]
# nfnl x nt_j x 3
rr_j = rr[:, sec[tj] : sec[tj + 1], 1:]
mm_j = exclude_mask[:, sec[tj] : sec[tj + 1]]
rr_j = rr_j * mm_j[:, :, None]
# nfnl x nt_i x nt_j
env_ij = np.einsum("ijm,ikm->ijk", rr_i, rr_j)
# nfnl x nt_i x nt_j x 1
env_ij_reshape = env_ij[:, :, :, None]
# nfnl x nt_i x nt_j x ng
gg = self.embeddings[embedding_idx].call(env_ij_reshape)
# nfnl x nt_i x nt_j x ng
res_ij = np.einsum("ijk,ijkm->im", env_ij, gg)
res_ij = res_ij * (1.0 / float(nei_type_i) / float(nei_type_j))
result += res_ij
# nf x nloc x ng
result = result.reshape(nf, nloc, ng).astype(GLOBAL_NP_FLOAT_PRECISION)
return result, None, None, None, ww

def serialize(self) -> dict:
"""Serialize the descriptor to dict."""
for embedding_idx in itertools.product(range(self.ntypes), repeat=2):
# not actually used; to match serilization data from TF to pass the test
ti, tj = embedding_idx
if (self.exclude_types and embedding_idx in self.emask) or tj < ti:
self.embeddings[embedding_idx].clear()

return {
"@class": "Descriptor",
"type": "se_e3",
"@version": 1,
"rcut": self.rcut,
"rcut_smth": self.rcut_smth,
"sel": self.sel,
"neuron": self.neuron,
"resnet_dt": self.resnet_dt,
"set_davg_zero": self.set_davg_zero,
"activation_function": self.activation_function,
"precision": np.dtype(PRECISION_DICT[self.precision]).name,
"embeddings": self.embeddings.serialize(),
"env_mat": self.env_mat.serialize(),
"exclude_types": self.exclude_types,
"env_protection": self.env_protection,
"@variables": {
"davg": self.davg,
"dstd": self.dstd,
},
"trainable": self.trainable,
}

@classmethod
def deserialize(cls, data: dict) -> "DescrptSeT":
"""Deserialize from dict."""
data = copy.deepcopy(data)
check_version_compatibility(data.pop("@version", 1), 1, 1)
data.pop("@class", None)
data.pop("type", None)
variables = data.pop("@variables")
embeddings = data.pop("embeddings")
env_mat = data.pop("env_mat")
obj = cls(**data)

obj["davg"] = variables["davg"]
obj["dstd"] = variables["dstd"]
obj.embeddings = NetworkCollection.deserialize(embeddings)
return obj

@classmethod
def update_sel(cls, global_jdata: dict, local_jdata: dict):
"""Update the selection and perform neighbor statistics.
Parameters
----------
global_jdata : dict
The global data, containing the training section
local_jdata : dict
The local data refer to the current class
"""
local_jdata_cpy = local_jdata.copy()
return UpdateSel().update_one_sel(global_jdata, local_jdata_cpy, False)
Loading

0 comments on commit af82658

Please sign in to comment.