Skip to content

Commit

Permalink
feat: breaking: backend indepdent definition for dp model (#3208)
Browse files Browse the repository at this point in the history
Features:
- abstract base classes for atomic model, fitting and descriptor.
- dp model format for atomic models
- dp model format for models.
- torch support for atomic model format. 
- torch support `fparam` and `aparam`.

This pr also introduces the following updates:
- support region and nlist in numpy code.
- class decorator like `fitting_check_output` gives human readable class
names.
- support int types in precision dict.
- fix descriptor interfaces.
- refactor torch atomic model impl. introduces dirty hacks to be fixed. 
- provide `format_nlist` that format the nlist in forward_lower method. 

Known limitations:
- torch atomic model has dirty hacks
- interfaces for descriptor, fitting and model statistics was not
considered, should be fixed in future PRs.

Will be fixed
-  [x] dp model module path is a mess to be refactorized.
-  [x] nlist consistency should be checked. if not format nlist.
-  [x] doc strings.
-  [x] `fparam` and `aparam` support.

---------

Co-authored-by: Han Wang <wang_han@iapcm.ac.cn>
  • Loading branch information
wanghan-iapcm and Han Wang authored Feb 2, 2024
1 parent 032fa7d commit eb9b2ef
Show file tree
Hide file tree
Showing 65 changed files with 2,738 additions and 564 deletions.
34 changes: 34 additions & 0 deletions deepmd/dpmodel/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from .common import (
DEFAULT_PRECISION,
PRECISION_DICT,
NativeOP,
)
from .model import (
DPAtomicModel,
DPModel,
)
from .output_def import (
FittingOutputDef,
ModelOutputDef,
OutputVariableDef,
fitting_check_output,
get_deriv_name,
get_reduce_name,
model_check_output,
)

__all__ = [
"DPModel",
"DPAtomicModel",
"PRECISION_DICT",
"DEFAULT_PRECISION",
"NativeOP",
"ModelOutputDef",
"FittingOutputDef",
"OutputVariableDef",
"model_check_output",
"fitting_check_output",
"get_reduce_name",
"get_deriv_name",
]
6 changes: 5 additions & 1 deletion deepmd/model_format/common.py → deepmd/dpmodel/common.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from abc import (
ABC,
abstractmethod,
)

import numpy as np
Expand All @@ -12,16 +13,19 @@
"half": np.float16,
"single": np.float32,
"double": np.float64,
"int32": np.int32,
"int64": np.int64,
}
DEFAULT_PRECISION = "float64"


class NativeOP(ABC):
"""The unit operation of a native model."""

@abstractmethod
def call(self, *args, **kwargs):
"""Forward pass in NumPy implementation."""
raise NotImplementedError
pass

def __call__(self, *args, **kwargs):
"""Forward pass in NumPy implementation."""
Expand Down
12 changes: 12 additions & 0 deletions deepmd/dpmodel/descriptor/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from .make_base_descriptor import (
make_base_descriptor,
)
from .se_e2_a import (
DescrptSeA,
)

__all__ = [
"DescrptSeA",
"make_base_descriptor",
]
8 changes: 8 additions & 0 deletions deepmd/dpmodel/descriptor/base_descriptor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import numpy as np

from .make_base_descriptor import (
make_base_descriptor,
)

BaseDescriptor = make_base_descriptor(np.ndarray, "call")
106 changes: 106 additions & 0 deletions deepmd/dpmodel/descriptor/make_base_descriptor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from abc import (
ABC,
abstractclassmethod,
abstractmethod,
)
from typing import (
List,
Optional,
)


def make_base_descriptor(
t_tensor,
fwd_method_name: str = "forward",
):
"""Make the base class for the descriptor.
Parameters
----------
t_tensor
The type of the tensor. used in the type hint.
fwd_method_name
Name of the forward method. For dpmodels, it should be "call".
For torch models, it should be "forward".
"""

class BD(ABC):
"""Base descriptor provides the interfaces of descriptor."""

@abstractmethod
def get_rcut(self) -> float:
"""Returns the cut-off radius."""
pass

@abstractmethod
def get_sel(self) -> List[int]:
"""Returns the number of selected neighboring atoms for each type."""
pass

def get_nsel(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return sum(self.get_sel())

def get_nnei(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.get_nsel()

@abstractmethod
def get_ntypes(self) -> int:
"""Returns the number of element types."""
pass

@abstractmethod
def get_dim_out(self) -> int:
"""Returns the output descriptor dimension."""
pass

@abstractmethod
def get_dim_emb(self) -> int:
"""Returns the embedding dimension of g2."""
pass

@abstractmethod
def distinguish_types(self) -> bool:
"""Returns if the descriptor requires a neighbor list that distinguish different
atomic types or not.
"""
pass

@abstractmethod
def compute_input_stats(self, merged):
"""Update mean and stddev for descriptor elements."""
pass

@abstractmethod
def init_desc_stat(self, sumr, suma, sumn, sumr2, suma2):
"""Initialize the model bias by the statistics."""
pass

@abstractmethod
def fwd(
self,
extended_coord,
extended_atype,
nlist,
mapping: Optional[t_tensor] = None,
):
"""Calculate descriptor."""
pass

@abstractmethod
def serialize(self) -> dict:
"""Serialize the obj to dict."""
pass

@abstractclassmethod
def deserialize(cls):
"""Deserialize from a dict."""
pass

setattr(BD, fwd_method_name, BD.fwd)
delattr(BD, "fwd")

return BD
Original file line number Diff line number Diff line change
Expand Up @@ -13,20 +13,22 @@
Optional,
)

from .common import (
from deepmd.dpmodel import (
DEFAULT_PRECISION,
NativeOP,
)
from .env_mat import (
EnvMat,
)
from .network import (
from deepmd.dpmodel.utils import (
EmbeddingNet,
EnvMat,
NetworkCollection,
)

from .base_descriptor import (
BaseDescriptor,
)


class DescrptSeA(NativeOP):
class DescrptSeA(NativeOP, BaseDescriptor):
r"""DeepPot-SE constructed from all information (both angular and radial) of
atomic configurations. The embedding takes the distance between atoms as input.
Expand Down Expand Up @@ -193,9 +195,43 @@ def __getitem__(self, key):

@property
def dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.get_dim_out()

def get_dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.neuron[-1] * self.axis_neuron

def get_dim_emb(self):
"""Returns the embedding (g2) dimension of this descriptor."""
return self.neuron[-1]

def get_rcut(self):
"""Returns cutoff radius."""
return self.rcut

def get_sel(self):
"""Returns cutoff radius."""
return self.sel

def distinguish_types(self):
"""Returns if the descriptor requires a neighbor list that distinguish different
atomic types or not.
"""
return True

def get_ntypes(self) -> int:
"""Returns the number of element types."""
return self.ntypes

def compute_input_stats(self, merged):
"""Update mean and stddev for descriptor elements."""
raise NotImplementedError

def init_desc_stat(self, sumr, suma, sumn, sumr2, suma2):
"""Initialize the model bias by the statistics."""
raise NotImplementedError

def cal_g(
self,
ss,
Expand All @@ -212,6 +248,7 @@ def call(
coord_ext,
atype_ext,
nlist,
mapping: Optional[np.ndarray] = None,
):
"""Compute the descriptor.
Expand All @@ -223,6 +260,8 @@ def call(
The extended aotm types. shape: nf x nall
nlist
The neighbor list. shape: nf x nloc x nnei
mapping
The index mapping from extended to lcoal region. not used by this descriptor.
Returns
-------
Expand All @@ -240,6 +279,7 @@ def call(
sw
The smooth switch function.
"""
del mapping
# nf x nloc x nnei x 4
rr, ww = self.env_mat.call(coord_ext, atype_ext, nlist, self.davg, self.dstd)
nf, nloc, nnei, _ = rr.shape
Expand Down
12 changes: 12 additions & 0 deletions deepmd/dpmodel/fitting/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from .invar_fitting import (
InvarFitting,
)
from .make_base_fitting import (
make_base_fitting,
)

__all__ = [
"InvarFitting",
"make_base_fitting",
]
8 changes: 8 additions & 0 deletions deepmd/dpmodel/fitting/base_fitting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import numpy as np

from .make_base_fitting import (
make_base_fitting,
)

BaseFitting = make_base_fitting(np.ndarray, fwd_method_name="call")
Original file line number Diff line number Diff line change
Expand Up @@ -2,30 +2,35 @@
import copy
from typing import (
Any,
Dict,
List,
Optional,
)

import numpy as np

from .common import (
from deepmd.dpmodel import (
DEFAULT_PRECISION,
NativeOP,
)
from .network import (
FittingNet,
NetworkCollection,
)
from .output_def import (
from deepmd.dpmodel.output_def import (
FittingOutputDef,
OutputVariableDef,
fitting_check_output,
)
from deepmd.dpmodel.utils import (
FittingNet,
NetworkCollection,
)

from .base_fitting import (
BaseFitting,
)


@fitting_check_output
class InvarFitting(NativeOP):
r"""Fitting the energy (or a porperty of `dim_out`) of the system. The force and the virial can also be trained.
class InvarFitting(NativeOP, BaseFitting):
r"""Fitting the energy (or a rotationally invariant porperty of `dim_out`) of the system. The force and the virial can also be trained.
Lets take the energy fitting task as an example.
The potential energy :math:`E` is a fitting network function of the descriptor :math:`\mathcal{D}`:
Expand Down Expand Up @@ -279,7 +284,7 @@ def call(
h2: Optional[np.array] = None,
fparam: Optional[np.array] = None,
aparam: Optional[np.array] = None,
):
) -> Dict[str, np.array]:
"""Calculate the fitting.
Parameters
Expand Down Expand Up @@ -320,7 +325,7 @@ def call(
"which is not consistent with {self.numb_fparam}.",
)
fparam = (fparam - self.fparam_avg) * self.fparam_inv_std
fparam = np.tile(fparam.reshape([nf, 1, -1]), [1, nloc, 1])
fparam = np.tile(fparam.reshape([nf, 1, self.numb_fparam]), [1, nloc, 1])
xx = np.concatenate(
[xx, fparam],
axis=-1,
Expand All @@ -333,6 +338,7 @@ def call(
"get an input aparam of dim {aparam.shape[-1]}, ",
"which is not consistent with {self.numb_aparam}.",
)
aparam = aparam.reshape([nf, nloc, self.numb_aparam])
aparam = (aparam - self.aparam_avg) * self.aparam_inv_std
xx = np.concatenate(
[xx, aparam],
Expand Down
Loading

0 comments on commit eb9b2ef

Please sign in to comment.