Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix passing kwargs to LM loading (e.g. proxy) #132

Merged
merged 1 commit into from
Oct 31, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 14 additions & 14 deletions farm/modeling/language_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def forward(self, input_ids, padding_mask, **kwargs):
raise NotImplementedError

@classmethod
def load(cls, pretrained_model_name_or_path):
def load(cls, pretrained_model_name_or_path, **kwargs):
"""
Load a pretrained language model either by

Expand Down Expand Up @@ -87,11 +87,11 @@ def load(cls, pretrained_model_name_or_path):
else:
# it's a model name which we try to resolve from s3. for now only works for bert models
if 'roberta' in pretrained_model_name_or_path:
language_model = cls.subclasses["Roberta"].load(pretrained_model_name_or_path)
language_model = cls.subclasses["Roberta"].load(pretrained_model_name_or_path, **kwargs)
elif 'bert' in pretrained_model_name_or_path:
language_model = cls.subclasses["Bert"].load(pretrained_model_name_or_path)
language_model = cls.subclasses["Bert"].load(pretrained_model_name_or_path, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path:
language_model = cls.subclasses["XLNet"].load(pretrained_model_name_or_path)
language_model = cls.subclasses["XLNet"].load(pretrained_model_name_or_path, **kwargs)

assert language_model is not None

Expand Down Expand Up @@ -225,7 +225,7 @@ def __init__(self):
self.name = "bert"

@classmethod
def load(cls, pretrained_model_name_or_path, language=None):
def load(cls, pretrained_model_name_or_path, language=None, **kwargs):
"""
Load a pretrained model by supplying

Expand All @@ -246,11 +246,11 @@ def load(cls, pretrained_model_name_or_path, language=None):
# FARM style
bert_config = BertConfig.from_pretrained(farm_lm_config)
farm_lm_model = os.path.join(pretrained_model_name_or_path, "language_model.bin")
bert.model = BertModel.from_pretrained(farm_lm_model, config=bert_config)
bert.model = BertModel.from_pretrained(farm_lm_model, config=bert_config, **kwargs)
bert.language = bert.model.config.language
else:
# Pytorch-transformer Style
bert.model = BertModel.from_pretrained(pretrained_model_name_or_path)
bert.model = BertModel.from_pretrained(pretrained_model_name_or_path, **kwargs)
bert.language = cls._infer_language_from_name(pretrained_model_name_or_path)
return bert

Expand Down Expand Up @@ -316,7 +316,7 @@ def __init__(self):
self.name = "roberta"

@classmethod
def load(cls, pretrained_model_name_or_path, language=None):
def load(cls, pretrained_model_name_or_path, language=None, **kwargs):
"""
Load a language model either by supplying

Expand All @@ -338,11 +338,11 @@ def load(cls, pretrained_model_name_or_path, language=None):
# FARM style
config = RobertaConfig.from_pretrained(farm_lm_config)
farm_lm_model = os.path.join(pretrained_model_name_or_path, "language_model.bin")
roberta.model = RobertaModel.from_pretrained(farm_lm_model, config=config)
roberta.model = RobertaModel.from_pretrained(farm_lm_model, config=config, **kwargs)
roberta.language = roberta.model.config.language
else:
# Huggingface transformer Style
roberta.model = RobertaModel.from_pretrained(pretrained_model_name_or_path)
roberta.model = RobertaModel.from_pretrained(pretrained_model_name_or_path, **kwargs)
roberta.language = cls._infer_language_from_name(pretrained_model_name_or_path)
return roberta

Expand Down Expand Up @@ -408,7 +408,7 @@ def __init__(self):
self.pooler = None

@classmethod
def load(cls, pretrained_model_name_or_path, language=None):
def load(cls, pretrained_model_name_or_path, language=None, **kwargs):
"""
Load a language model either by supplying

Expand All @@ -430,11 +430,11 @@ def load(cls, pretrained_model_name_or_path, language=None):
# FARM style
config = XLNetConfig.from_pretrained(farm_lm_config)
farm_lm_model = os.path.join(pretrained_model_name_or_path, "language_model.bin")
xlnet.model = XLNetModel.from_pretrained(farm_lm_model, config=config)
xlnet.model = XLNetModel.from_pretrained(farm_lm_model, config=config, **kwargs)
xlnet.language = xlnet.model.config.language
else:
# Pytorch-transformer Style
xlnet.model = XLNetModel.from_pretrained(pretrained_model_name_or_path)
xlnet.model = XLNetModel.from_pretrained(pretrained_model_name_or_path, **kwargs)
xlnet.language = cls._infer_language_from_name(pretrained_model_name_or_path)
config = xlnet.model.config
# XLNet does not provide a pooled_output by default. Therefore, we need to initialize an extra pooler.
Expand Down Expand Up @@ -499,4 +499,4 @@ def save_config(self, save_dir):
setattr(self.model.config, "name", self.__class__.__name__)
setattr(self.model.config, "language", self.language)
string = self.model.config.to_json_string()
file.write(string)
file.write(string)