CvT: ntroducing Convolutions to Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for CvT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-12-14): Code is released and ported weights are uploaded.
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./RepMLP-Res50-light-224_train.pdparams
, to use the RepMLP-Res50-light-224_train
model in python:
from config import get_config
from resmlp_resnet import build_resmlp_resnet as build_model
# config files in ./configs/
config = get_config('./configs/repmlpres50_light_224_train.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./RepMLP-Res50-light-224_train')
model.set_dict(model_state_dict)
To evaluate ResMLP model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=128 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='CvT-13-224x224-IN-1k'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cvt-13-224x224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./CvT-13-224x224-IN-1k'
To train the ResMLP Transformer model on ImageNet2012 with single GPUs, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/repmlpres50_light_224_train.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/repmlpres50_light_224_train.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{wu2021cvt,
title={CvT: Introducing Convolutions to Vision Transformers},
author={Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang},
journal={arXiv preprint arXiv:2103.15808},
year={2021}
}