This repository contains the implementation and dataset of our paper GATES: Using Graph Attention Networks for Entity Summarization.
## DatasetOn this experiment, we used two datasets:
- ESBM (version 1.2) that consists of 175 entities related to 150 entities from DBpedia and 25 entities from LinkedMDB.
- FACES dataset.
GATES implements knowledge graph embedding and also provides pre-trained model for each model on ESBM benchmark dataset as follows:
- ComplEx
- ConEx
- DistMult
GATES applies Glove and fastText as word embeddings.
- Download pre-trained model glove.6B.zip
- Extract the zip file in data folder
- Download pre-trained model wiki-news-300d-1M.vec.zip
- Extract the zip file and put the file on data folder
- Ubuntu 10.04.2 LTS
- python 3.6+
- pytorch 1.7.0
Our dependencies from external library that are required to run the model, you need to install them as follow:
conda create -n dice-gates python=3.6
conda activate dice-gates
pip install scipy==1.5.4
pip install numpy==1.19.2
pip install gensim==3.8.3
pip install nltk==3.5
pip install torch==1.7.0
pip install psutil==5.8.0
pip install SPARQLWrapper==1.8.5
pip install matplotlib==3.3.4
pip install rdflib==4.2.1
pip install tqdm
or
pip install -r requirements.txt
git clone https://github.com/dice-group/GATES.git
usage: main.py [-h] [--mode MODE] [--kge_model KGE_MODEL]
[--loss_function LOSS_FUNCTION] [--ent_emb_dim ENT_EMB_DIM]
[--pred_emb_dim PRED_EMB_DIM] [--hidden_layers HIDDEN_LAYERS]
[--nheads NHEADS] [--lr LR] [--dropout DROPOUT]
[--weight_decay WEIGHT_DECAY] [--regularization REGULARIZATION]
[--save_every SAVE_EVERY] [--n_epoch N_EPOCH]
[--word_emb_model WORD_EMB_MODEL]
[--word_emb_calc WORD_EMB_CALC]
[--use_epoch USE_EPOCH [USE_EPOCH ...]]
[--concat_model CONCAT_MODEL]
[--weighted_edges_method WEIGHTED_EDGES_METHOD]
GATES: Graph Attention Network for Entity Summarization
optional arguments:
-h, --help show this help message and exit
--mode MODE use which mode type: train/test/all
--kge_model KGE_MODEL
use ComplEx/DistMult/ConEx
--loss_function LOSS_FUNCTION
use which loss type: BCE/MSE
--ent_emb_dim ENT_EMB_DIM
the embeddiing dimension of entity
--pred_emb_dim PRED_EMB_DIM
the embeddiing dimension of predicate
--hidden_layers HIDDEN_LAYERS
the number of hidden layers
--nheads NHEADS the number of heads attention
--lr LR use to define learning rate hyperparameter
--dropout DROPOUT use to define dropout hyperparameter
--weight_decay WEIGHT_DECAY
use to define weight decay hyperparameter if the
regularization set to True
--regularization REGULARIZATION
use to define regularization: True/False
--save_every SAVE_EVERY
save model in every n epochs
--n_epoch N_EPOCH train model in total n epochs
--word_emb_model WORD_EMB_MODEL
use which word embedding model: fasttext/Glove
--word_emb_calc WORD_EMB_CALC
use which method to compute textual form: SUM/AVG
--use_epoch USE_EPOCH [USE_EPOCH ...]
how many epochs to train the model
--concat_model CONCAT_MODEL
use which concatenation model (1 or 2). In which, 1
refers to KGE + Word embedding, and 2 refers to KGE +
(KGE/Word embeddings) depends on the object value
--weighted_edges_method WEIGHTED_EDGES_METHOD
use which apply the initialize weighted edges method:
tf-idf
python main.py --mode train --weighted_edges_method tf-idf
python main.py --mode test --weighted_edges_method tf-idf
Evaluation Method: F-Measure
Model | DBpedia | LMDB | FACES | |||
---|---|---|---|---|---|---|
K=5 | K=10 | K=5 | K=10 | K=5 | K=10 | |
ESA | 0,332 | 0,532 | 0,353 | 0,435 | 0,153 | 0,261 |
AutoSUM | 0,372 | 0,555 | 0,430 | 0,520 | 0,241 | 0,316 |
DeepLENS | 0,404 | 0,575 | 0,469 | 0,489 | 0,130 | 0,248 |
GATES | 0,423 | 0,574 | 0,437 | 0,535 | 0,254 | 0.324 |
If you have any feedback or suggestions, feel free to send me an email to asep.fajar.firmansyah@upb.de
@inproceedings{DBLP:conf/kcap/FirmansyahMN21,
author = {Asep Fajar Firmansyah and
Diego Moussallem and
Axel{-}Cyrille Ngonga Ngomo},
editor = {Anna Lisa Gentile and
Rafael Gon{\c{c}}alves},
title = {{GATES:} Using Graph Attention Networks for Entity Summarization},
booktitle = {{K-CAP} '21: Knowledge Capture Conference, Virtual Event, USA, December
2-3, 2021},
pages = {73--80},
publisher = {{ACM}},
year = {2021},
url = {https://doi.org/10.1145/3460210.3493574},
doi = {10.1145/3460210.3493574},
timestamp = {Thu, 25 Nov 2021 10:29:00 +0100},
biburl = {https://dblp.org/rec/conf/kcap/FirmansyahMN21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
If you have any questions or feedbacks, feel free to contact us at asep.fajar.firmansyah@upb.de