Skip to content

dimajix/pyspark-ml-crashcourse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

PySpark ML Crashcourse

This repository contains exercises and solutions for a one-day crash course for PySpark and Spark ML. The repository only contains Jupyter Notebooks which assume a working PySpark kernel with Python 3.5 and Spark 2.1.

Author

All notebooks have been create by Kaya Kupferschmidt @ dimajix. In case you have any questions, feel free to contact me at k.kupferschmidt@dimajix.de

01 - PySpark DataFrame Introduction

This notebook contains some simple snippets to get a basic understanding how to interact with Spark DataFrames in Python.

02 - PySpark Word Count (exercise + solution)

These notebooks contain the classic word count, implemented with DataFrames.

03 - Linear Regression (skeleton + solution)

These notebooks contain a simple linear regression exercise as an introduction to machine learning with Spark.

04 - Text Classification (exercise + solution)

After being exposed to a simple linear regression, these notebooks contain an exercise to perform a simple statistical text classification.

05 - Hyper Parameter Tuning (exercise + solution)

As with many complex algorithms and ML pipelines, the text classification has many hyper parameters. These notebooks show how to perform hyper parameter tuning with PySpark.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages