It focused on easy and fast use by modularization from data preprocessing to modeling.
-
- input parameter : org_df
- org_df (type: DataFrame) >> Target of LabelEncoding
- output : Return DataFrame after LabelEncoding
-
- input parameter : org_df, target, showPlot
- org_df (type: DataFrame) >> Target of MinMaxScaling
- target (type: String) >> Feature name of target value
- showPlot (type: bool, default=False) >> Whether to plot the result
- output : Return DataFrame that after MinMaxScaling. Drawing graph based on whether or not plotting
-
- input parameter : org_df, target, showPlot
- org_df (type: DataFrame) >> Target of RobustScaling
- target (type: String) >> Feature name of target value
- showPlot (type: bool, default=False) >> Whether to plot the result
- output : Return DataFrame that after RobustScaling. Drawing graph based on whether or not plotting
-
- input parameter : org_df, target, showPlot
- org_df (type: DataFrame) >> Target of StandardScaling
- target (type: String) >> Feature name of target value
- showPlot (type: Bool, default=False) >> Whether to plot the result
- output : Return DataFrame that after StandardScaling. Drawing graph based on whether or not plotting
-
- input parameter : scaled_df, target, test_size, shuffle, criterion, showPlot
- scaled_df (type: DataFrame) >> Target of DecisionTree that after Scaling
- target (type: String) >> Feature name of target value
- test_size (type: Float, default: 0.25) >> Specify testset ratio when training_test_split
- shuffle (type: Bool, default: False) >> Specify whether shuffle when training_test_split
- criterion (type: String, default: 'gini') >> Determine the type of criterion used in Decision Tree
- showPlot (type: bool, default=False) >> Whether to plot the result
- output : Show DecisionTree score and confision matrix. Drawing tree based on whether or not plotting
-
- input parameter : scaled_df, target, test_size, shuffle, k
- scaled_df (type: DataFrame) >> Target of DecisionTree that after Scaling
- target (type: String) >> Feature name of target value
- test_size (type: Float, default: 0.25) >> Specify testset ratio when training_test_split
- shuffle (type: Bool, default: False) >> Specify whether shuffle when training_test_split
- k (type: Int, default: 3) >> Specify a value for n_neighbors in KNN
- output : Show KNN score evaluated by cross_validation=5 and confision matrix
-
- input parameter : scaled_df, target, test_size, shuffle
- scaled_df (type: DataFrame) >> Target of DecisionTree that after Scaling
- target (type: String) >> Feature name of target value
- test_size (type: Float, default: 0.25) >> Specify testset ratio when training_test_split
- shuffle (type: Bool, default: False) >> Specify whether shuffle when training_test_split
- output : Show regression score