This is the implementation code for paper submitted to Bioinformatics: "DeepEM3D: Approaching human-level performance on 3D anisotropic EM image segmentation "
C++, bash shell, matlab, Cuda7.5
(1). Register at: http://brainiac2.mit.edu/SNEMI3D/user/register
(2). Login in and download data at: http://brainiac2.mit.edu/SNEMI3D/downloads
(3) Convert image files into h5 file that contains \data and \label sets.
-
To generate boundary labels:
run matlab scripts: /scripts/create_new_vertical_closed_label.m -
To generate all data h5 files (train, valid, test):
run matlab scripts: /scripts/read_data_write_data_with_enhanced_labels.m -
To train and predict netwroks models:
run shell scripts: /model/inception_residual_train_prediction_xfm/train.sh or predict.sh -
To generate segmentation on test set:
run matlab scripts /model/inception_residual_train_prediction_3fm/run_segmentation_on_test_set.m