torch can be installed from CRAN with:
install.packages("torch")
You can also install the development version with:
remotes::install_github("mlverse/torch")
At the first package load additional software will be installed.
You can create torch tensors from R objects with the torch_tensor
function and convert them back to R objects with as_array
.
library(torch)
x <- array(runif(8), dim = c(2, 2, 2))
y <- torch_tensor(x, dtype = torch_float64())
y
#> torch_tensor
#> (1,.,.) =
#> 0.1512 0.8540
#> 0.3250 0.3191
#>
#> (2,.,.) =
#> 0.8256 0.1999
#> 0.1343 0.4721
#> [ CPUDoubleType{2,2,2} ]
identical(x, as_array(y))
#> [1] TRUE
In the following snippet we let torch, using the autograd feature, calculate the derivatives:
x <- torch_tensor(1, requires_grad = TRUE)
w <- torch_tensor(2, requires_grad = TRUE)
b <- torch_tensor(3, requires_grad = TRUE)
y <- w * x + b
y$backward()
x$grad
#> torch_tensor
#> 2
#> [ CPUFloatType{1} ]
w$grad
#> torch_tensor
#> 1
#> [ CPUFloatType{1} ]
b$grad
#> torch_tensor
#> 1
#> [ CPUFloatType{1} ]
No matter your current skills it’s possible to contribute to torch
development. See the contributing
guide
for more information.