Skip to content

Latest commit

 

History

History
27 lines (24 loc) · 1.56 KB

README.md

File metadata and controls

27 lines (24 loc) · 1.56 KB

Implementation of L1, L2, ElasticNet, GroupLasso and GroupSparseRegularization

  1. Publication available here: [https://towardsdatascience.com/different-types-of-regularization-on-neuronal-network-with-pytorch-a9d6faf4793e]
  2. Implemented in pytorch. This is an attempt to provide different type of regularization of neuronal network weights in pytorch.
  3. The regularization can be applied to one set of weight or all the weights of the model

Metrics Scores table

Regularization Test Accuracy Best HyperParameters
L1 98.3193 'batch_size': 32, 'ld_reg': 1e-05, 'lr': 0.0001, 'n_epoch': 200
L2 99.1596 'batch_size': 32, 'ld_reg': 1e-06, 'lr': 0.0001, 'n_epoch': 200
EL 98.3193 'alpha_reg': 0.9, 'batch_size': 32, 'ld_reg': 1e-05, 'lr': 0.001, 'n_epoch': 200
GL 97.4789 'batch_size': 32, 'ld_reg': 1e-07, 'lr': 0.0001, 'n_epoch': 200
SGL 76.4705 'batch_size': 128, 'ld_reg': 1e-06, 'lr': 1e-05, 'n_epoch': 200
FC 90.7563 'batch_size': 128, 'lr': 0.01, 'n_epoch': 200
FC with Weight decay 99.1596 'batch_size': 32, 'lr': 0.0001, 'n_epoch': 200, 'weight_decay': 0.01

Sparsity Percentage table

Model Layer 1 (%) Layer 2 (%) Layer 3(%)
L1 60 80 0
L2 62.5 5 0
EL 85 80 30
GL 7.5 5 0
SGL 92.5 85 30
FC 0 0 0
FC with Weight decay 0 0 0