Skip to content

Applied Sparse regularization (L1), Weight decay regularization (L2), ElasticNet, GroupLasso and GroupSparseLasso to Neuronal Network.

License

Notifications You must be signed in to change notification settings

dizam92/pyTorchReg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of L1, L2, ElasticNet, GroupLasso and GroupSparseRegularization

  1. Publication available here: [https://towardsdatascience.com/different-types-of-regularization-on-neuronal-network-with-pytorch-a9d6faf4793e]
  2. Implemented in pytorch. This is an attempt to provide different type of regularization of neuronal network weights in pytorch.
  3. The regularization can be applied to one set of weight or all the weights of the model

Metrics Scores table

Regularization Test Accuracy Best HyperParameters
L1 98.3193 'batch_size': 32, 'ld_reg': 1e-05, 'lr': 0.0001, 'n_epoch': 200
L2 99.1596 'batch_size': 32, 'ld_reg': 1e-06, 'lr': 0.0001, 'n_epoch': 200
EL 98.3193 'alpha_reg': 0.9, 'batch_size': 32, 'ld_reg': 1e-05, 'lr': 0.001, 'n_epoch': 200
GL 97.4789 'batch_size': 32, 'ld_reg': 1e-07, 'lr': 0.0001, 'n_epoch': 200
SGL 76.4705 'batch_size': 128, 'ld_reg': 1e-06, 'lr': 1e-05, 'n_epoch': 200
FC 90.7563 'batch_size': 128, 'lr': 0.01, 'n_epoch': 200
FC with Weight decay 99.1596 'batch_size': 32, 'lr': 0.0001, 'n_epoch': 200, 'weight_decay': 0.01

Sparsity Percentage table

Model Layer 1 (%) Layer 2 (%) Layer 3(%)
L1 60 80 0
L2 62.5 5 0
EL 85 80 30
GL 7.5 5 0
SGL 92.5 85 30
FC 0 0 0
FC with Weight decay 0 0 0

About

Applied Sparse regularization (L1), Weight decay regularization (L2), ElasticNet, GroupLasso and GroupSparseLasso to Neuronal Network.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published