Skip to content

Commit

Permalink
formatting
Browse files Browse the repository at this point in the history
  • Loading branch information
sshane committed Dec 22, 2021
1 parent b80b08e commit 481c390
Showing 1 changed file with 53 additions and 52 deletions.
105 changes: 53 additions & 52 deletions selfdrive/controls/lib/longitudinal_mpc_lib/long_mpc.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@

X_DIM = 3
U_DIM = 1
PARAM_DIM= 4
PARAM_DIM = 4
COST_E_DIM = 5
COST_DIM = COST_E_DIM + 1
CONSTR_DIM = 4
Expand All @@ -39,12 +39,11 @@
CRASH_DISTANCE = .5
LIMIT_COST = 1e6


# Less timestamps doesn't hurt performance and leads to
# much better convergence of the MPC with low iterations
N = 12
MAX_T = 10.0
T_IDXS_LST = [index_function(idx, max_val=MAX_T, max_idx=N+1) for idx in range(N+1)]
T_IDXS_LST = [index_function(idx, max_val=MAX_T, max_idx=N + 1) for idx in range(N + 1)]

T_IDXS = np.array(T_IDXS_LST)
T_DIFFS = np.diff(T_IDXS, prepend=[0.])
Expand All @@ -53,11 +52,14 @@
COMFORT_BRAKE = 2.5
STOP_DISTANCE = 6.0


def get_stopped_equivalence_factor(v_lead):
return (v_lead**2) / (2 * COMFORT_BRAKE)
return (v_lead ** 2) / (2 * COMFORT_BRAKE)


def get_safe_obstacle_distance(v_ego):
return (v_ego**2) / (2 * COMFORT_BRAKE) + T_FOLLOW * v_ego + STOP_DISTANCE
return (v_ego ** 2) / (2 * COMFORT_BRAKE) + T_FOLLOW * v_ego + STOP_DISTANCE


def desired_follow_distance(v_ego, v_lead):
return get_safe_obstacle_distance(v_ego) - get_stopped_equivalence_factor(v_lead)
Expand Down Expand Up @@ -123,8 +125,8 @@ def gen_long_mpc_solver():
x_obstacle = ocp.model.p[2]
prev_a = ocp.model.p[3]

ocp.cost.yref = np.zeros((COST_DIM, ))
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
ocp.cost.yref = np.zeros((COST_DIM,))
ocp.cost.yref_e = np.zeros((COST_E_DIM,))

desired_dist_comfort = get_safe_obstacle_distance(v_ego)

Expand All @@ -136,18 +138,18 @@ def gen_long_mpc_solver():
x_ego,
v_ego,
a_ego,
20*(a_ego - prev_a),
20 * (a_ego - prev_a),
j_ego]
ocp.model.cost_y_expr = vertcat(*costs)
ocp.model.cost_y_expr_e = vertcat(*costs[:-1])

# Constraints on speed, acceleration and desired distance to
# the obstacle, which is treated as a slack constraint so it
# behaves like an assymetrical cost.
constraints = vertcat((v_ego),
constraints = vertcat(v_ego,
(a_ego - a_min),
(a_max - a_ego),
((x_obstacle - x_ego) - (3/4) * (desired_dist_comfort)) / (v_ego + 10.))
((x_obstacle - x_ego) - (3 / 4) * (desired_dist_comfort)) / (v_ego + 10.))
ocp.model.con_h_expr = constraints
ocp.model.con_h_expr_e = vertcat(np.zeros(CONSTR_DIM))

Expand All @@ -164,8 +166,8 @@ def gen_long_mpc_solver():

ocp.constraints.lh = np.zeros(CONSTR_DIM)
ocp.constraints.lh_e = np.zeros(CONSTR_DIM)
ocp.constraints.uh = 1e4*np.ones(CONSTR_DIM)
ocp.constraints.uh_e = 1e4*np.ones(CONSTR_DIM)
ocp.constraints.uh = 1e4 * np.ones(CONSTR_DIM)
ocp.constraints.uh_e = 1e4 * np.ones(CONSTR_DIM)
ocp.constraints.idxsh = np.arange(CONSTR_DIM)

# The HPIPM solver can give decent solutions even when it is stopped early
Expand All @@ -176,7 +178,7 @@ def gen_long_mpc_solver():
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = 'SQP_RTI'
ocp.solver_options.qp_solver_cond_N = N//4
ocp.solver_options.qp_solver_cond_N = N // 4

# More iterations take too much time and less lead to inaccurate convergence in
# some situations. Ideally we would run just 1 iteration to ensure fixed runtime.
Expand All @@ -190,29 +192,29 @@ def gen_long_mpc_solver():
return ocp


class LongitudinalMpc():
class LongitudinalMpc:
def __init__(self, e2e=False):
self.e2e = e2e
self.reset()
self.accel_limit_arr = np.zeros((N+1, 2))
self.accel_limit_arr[:,0] = -1.2
self.accel_limit_arr[:,1] = 1.2
self.accel_limit_arr = np.zeros((N + 1, 2))
self.accel_limit_arr[:, 0] = -1.2
self.accel_limit_arr[:, 1] = 1.2
self.source = SOURCES[2]

def reset(self):
self.solver = AcadosOcpSolverFast('long', N, EXPORT_DIR)
self.v_solution = [0.0 for i in range(N+1)]
self.a_solution = [0.0 for i in range(N+1)]
self.v_solution = [0.0 for i in range(N + 1)]
self.a_solution = [0.0 for i in range(N + 1)]
self.prev_a = np.array(self.a_solution)
self.j_solution = [0.0 for i in range(N)]
self.yref = np.zeros((N+1, COST_DIM))
self.yref = np.zeros((N + 1, COST_DIM))
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
self.x_sol = np.zeros((N+1, X_DIM))
self.u_sol = np.zeros((N,1))
self.params = np.zeros((N+1, PARAM_DIM))
for i in range(N+1):
self.x_sol = np.zeros((N + 1, X_DIM))
self.u_sol = np.zeros((N, 1))
self.params = np.zeros((N + 1, PARAM_DIM))
for i in range(N + 1):
self.solver.set(i, 'x', np.zeros(X_DIM))
self.last_cloudlog_t = 0
self.status = False
Expand All @@ -230,7 +232,7 @@ def set_weights(self):
def set_weights_for_lead_policy(self):
W = np.asfortranarray(np.diag([X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, A_CHANGE_COST, J_EGO_COST]))
for i in range(N):
W[4,4] = A_CHANGE_COST * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0])
W[4, 4] = A_CHANGE_COST * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0])
self.solver.cost_set(i, 'W', W)
# Setting the slice without the copy make the array not contiguous,
# causing issues with the C interface.
Expand Down Expand Up @@ -258,14 +260,14 @@ def set_cur_state(self, v, a):
if abs(self.x0[1] - v) > 2.:
self.x0[1] = v
self.x0[2] = a
for i in range(0, N+1):
for i in range(0, N + 1):
self.solver.set(i, 'x', self.x0)
else:
self.x0[1] = v
self.x0[2] = a

def extrapolate_lead(self, x_lead, v_lead, a_lead, a_lead_tau):
a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2)/2.)
a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS ** 2) / 2.)
v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0, 1e8)
x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj)
lead_xv = np.column_stack((x_lead_traj, v_lead_traj))
Expand All @@ -287,7 +289,7 @@ def process_lead(self, lead):

# MPC will not converge if immediate crash is expected
# Clip lead distance to what is still possible to brake for
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-MIN_ACCEL * 2)
min_x_lead = ((v_ego + v_lead) / 2) * (v_ego - v_lead) / (-MIN_ACCEL * 2)
x_lead = clip(x_lead, min_x_lead, 1e8)
v_lead = clip(v_lead, 0.0, 1e8)
a_lead = clip(a_lead, -10., 5.)
Expand All @@ -307,69 +309,68 @@ def update(self, carstate, radarstate, v_cruise, prev_accel_constraint=False):
lead_xv_1 = self.process_lead(radarstate.leadTwo)

# set accel limits in params
self.params[:,0] = interp(float(self.status), [0.0, 1.0], [self.cruise_min_a, MIN_ACCEL])
self.params[:,1] = self.cruise_max_a
self.params[:, 0] = interp(float(self.status), [0.0, 1.0], [self.cruise_min_a, MIN_ACCEL])
self.params[:, 1] = self.cruise_max_a

# To estimate a safe distance from a moving lead, we calculate how much stopping
# distance that lead needs as a minimum. We can add that to the current distance
# and then treat that as a stopped car/obstacle at this new distance.
lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1])
lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1])
lead_0_obstacle = lead_xv_0[:, 0] + get_stopped_equivalence_factor(lead_xv_0[:, 1])
lead_1_obstacle = lead_xv_1[:, 0] + get_stopped_equivalence_factor(lead_xv_1[:, 1])

# Fake an obstacle for cruise, this ensures smooth acceleration to set speed
# when the leads are no factor.
v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05)
v_upper = v_ego + (T_IDXS * self.cruise_max_a * 1.05)
v_cruise_clipped = np.clip(v_cruise * np.ones(N+1),
v_cruise_clipped = np.clip(v_cruise * np.ones(N + 1),
v_lower,
v_upper)
cruise_obstacle = np.cumsum(T_DIFFS * v_cruise_clipped) + get_safe_obstacle_distance(v_cruise_clipped)

x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle])
self.source = SOURCES[np.argmin(x_obstacles[0])]
self.params[:,2] = np.min(x_obstacles, axis=1)
self.params[:, 2] = np.min(x_obstacles, axis=1)
if prev_accel_constraint:
self.params[:,3] = np.copy(self.prev_a)
self.params[:, 3] = np.copy(self.prev_a)
else:
self.params[:,3] = a_ego
self.params[:, 3] = a_ego

self.run()
if (np.any(lead_xv_0[:,0] - self.x_sol[:,0] < CRASH_DISTANCE) and
radarstate.leadOne.modelProb > 0.9):
if (np.any(lead_xv_0[:, 0] - self.x_sol[:, 0] < CRASH_DISTANCE) and
radarstate.leadOne.modelProb > 0.9):
self.crash_cnt += 1
else:
self.crash_cnt = 0

def update_with_xva(self, x, v, a):
self.yref[:,1] = x
self.yref[:,2] = v
self.yref[:,3] = a
self.yref[:, 1] = x
self.yref[:, 2] = v
self.yref[:, 3] = a
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
self.accel_limit_arr[:,0] = -10.
self.accel_limit_arr[:,1] = 10.
x_obstacle = 1e5*np.ones((N+1))
self.accel_limit_arr[:, 0] = -10.
self.accel_limit_arr[:, 1] = 10.
x_obstacle = 1e5 * np.ones((N + 1))
self.params = np.concatenate([self.accel_limit_arr,
x_obstacle[:,None],
self.prev_a[:,None]], axis=1)
x_obstacle[:, None],
self.prev_a[:, None]], axis=1)
self.run()


def run(self):
for i in range(N+1):
for i in range(N + 1):
self.solver.set(i, 'p', self.params[i])
self.solver.constraints_set(0, "lbx", self.x0)
self.solver.constraints_set(0, "ubx", self.x0)
self.solution_status = self.solver.solve()
for i in range(N+1):
for i in range(N + 1):
self.x_sol[i] = self.solver.get(i, 'x')
for i in range(N):
self.u_sol[i] = self.solver.get(i, 'u')

self.v_solution = self.x_sol[:,1]
self.a_solution = self.x_sol[:,2]
self.j_solution = self.u_sol[:,0]
self.v_solution = self.x_sol[:, 1]
self.a_solution = self.x_sol[:, 2]
self.j_solution = self.u_sol[:, 0]

self.prev_a = np.interp(T_IDXS + 0.05, T_IDXS, self.a_solution)

Expand Down

0 comments on commit 481c390

Please sign in to comment.