Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model][MXNet] MXNet Tree LSTM example #279

Merged
merged 8 commits into from
Dec 27, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions examples/mxnet/tree_lstm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# Tree-LSTM
This is a re-implementation of the following paper:

> [**Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks**](http://arxiv.org/abs/1503.00075)
> *Kai Sheng Tai, Richard Socher, and Christopher Manning*.

The provided implementation can achieve a test accuracy of 51.72 which is comparable with the result reported in the original paper: 51.0(±0.5).
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does MXNet Tree-LSTM produce the same result as PyTorch? That's interesting


## Data
The script will download the [SST dataset] (http://nlp.stanford.edu/sentiment/index.html) and the GloVe 840B.300d embedding automatically if `--use-glove` is specified (note: download may take a while).

## Usage
```
python train.py --gpu 0
```

## Speed Test

See https://docs.google.com/spreadsheets/d/1eCQrVn7g0uWriz63EbEDdes2ksMdKdlbWMyT8PSU4rc .
208 changes: 208 additions & 0 deletions examples/mxnet/tree_lstm/train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
import argparse
import time
import warnings
import zipfile
import os

os.environ['DGLBACKEND'] = 'mxnet'
os.environ['MXNET_GPU_MEM_POOL_TYPE'] = 'Round'

import numpy as np
import mxnet as mx
from mxnet import gluon

import dgl
import dgl.data as data

from tree_lstm import TreeLSTM

def batcher(ctx):
def batcher_dev(batch):
batch_trees = dgl.batch(batch)
return data.SSTBatch(graph=batch_trees,
mask=batch_trees.ndata['mask'].as_in_context(ctx),
wordid=batch_trees.ndata['x'].as_in_context(ctx),
label=batch_trees.ndata['y'].as_in_context(ctx))
return batcher_dev

def prepare_glove():
if not (os.path.exists('glove.840B.300d.txt')
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think PyTorch Tree LSTM should prepare glove inside training script too.

and data.utils.check_sha1('glove.840B.300d.txt',
sha1_hash='294b9f37fa64cce31f9ebb409c266fc379527708')):
zip_path = data.utils.download('http://nlp.stanford.edu/data/glove.840B.300d.zip',
sha1_hash='8084fbacc2dee3b1fd1ca4cc534cbfff3519ed0d')
with zipfile.ZipFile(zip_path, 'r') as zf:
zf.extractall()
if not data.utils.check_sha1('glove.840B.300d.txt',
sha1_hash='294b9f37fa64cce31f9ebb409c266fc379527708'):
warnings.warn('The downloaded glove embedding file checksum mismatch. File content '
'may be corrupted.')

def main(args):
np.random.seed(args.seed)
mx.random.seed(args.seed)

best_epoch = -1
best_dev_acc = 0

cuda = args.gpu >= 0
if cuda:
if args.gpu in mx.test_utils.list_gpus():
ctx = mx.gpu(args.gpu)
else:
print('Requested GPU id {} was not found. Defaulting to CPU implementation'.format(args.gpu))
ctx = mx.cpu()

if args.use_glove:
prepare_glove()

trainset = data.SST()
train_loader = gluon.data.DataLoader(dataset=trainset,
batch_size=args.batch_size,
batchify_fn=batcher(ctx),
shuffle=True,
num_workers=0)
devset = data.SST(mode='dev')
dev_loader = gluon.data.DataLoader(dataset=devset,
batch_size=100,
batchify_fn=batcher(ctx),
shuffle=True,
num_workers=0)

testset = data.SST(mode='test')
test_loader = gluon.data.DataLoader(dataset=testset,
batch_size=100,
batchify_fn=batcher(ctx),
shuffle=False, num_workers=0)

model = TreeLSTM(trainset.num_vocabs,
args.x_size,
args.h_size,
trainset.num_classes,
args.dropout,
cell_type='childsum' if args.child_sum else 'nary',
pretrained_emb = trainset.pretrained_emb,
ctx=ctx)
print(model)
params_ex_emb =[x for x in model.collect_params().values()
if x.grad_req != 'null' and x.shape[0] != trainset.num_vocabs]
params_emb = list(model.embedding.collect_params().values())
for p in params_emb:
p.lr_mult = 0.1

model.initialize(mx.init.Xavier(magnitude=1), ctx=ctx)
model.hybridize()
trainer = gluon.Trainer(model.collect_params('^(?!embedding).*$'), 'adagrad',
{'learning_rate': args.lr, 'wd': args.weight_decay})
trainer_emb = gluon.Trainer(model.collect_params('^embedding.*$'), 'adagrad',
{'learning_rate': args.lr})

dur = []
L = gluon.loss.SoftmaxCrossEntropyLoss(axis=1)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In DyNet implementation, they use reduction=sum instead of mean, I'm also not sure which one is better, but in practice using sum produce higher results.

for epoch in range(args.epochs):
t_epoch = time.time()
for step, batch in enumerate(train_loader):
g = batch.graph
n = g.number_of_nodes()

# TODO begin_states function?
h = mx.nd.zeros((n, args.h_size), ctx=ctx)
c = mx.nd.zeros((n, args.h_size), ctx=ctx)
if step >= 3:
t0 = time.time() # tik
with mx.autograd.record():
pred = model(batch, h, c)
loss = L(pred, batch.label)

loss.backward()
trainer.step(args.batch_size)
trainer_emb.step(args.batch_size)

if step >= 3:
dur.append(time.time() - t0) # tok

if step > 0 and step % args.log_every == 0:
pred = pred.argmax(axis=1)
acc = (batch.label == pred).sum()
root_ids = [i for i in range(batch.graph.number_of_nodes()) if batch.graph.out_degree(i)==0]
root_acc = np.sum(batch.label.asnumpy()[root_ids] == pred.asnumpy()[root_ids])

print("Epoch {:05d} | Step {:05d} | Loss {:.4f} | Acc {:.4f} | Root Acc {:.4f} | Time(s) {:.4f}".format(
epoch, step, loss.sum().asscalar(), 1.0*acc.asscalar()/len(batch.label), 1.0*root_acc/len(root_ids), np.mean(dur)))
print('Epoch {:05d} training time {:.4f}s'.format(epoch, time.time() - t_epoch))

# eval on dev set
accs = []
root_accs = []
for step, batch in enumerate(dev_loader):
g = batch.graph
n = g.number_of_nodes()
h = mx.nd.zeros((n, args.h_size), ctx=ctx)
c = mx.nd.zeros((n, args.h_size), ctx=ctx)
pred = model(batch, h, c).argmax(1)

acc = (batch.label == pred).sum().asscalar()
accs.append([acc, len(batch.label)])
root_ids = [i for i in range(batch.graph.number_of_nodes()) if batch.graph.out_degree(i)==0]
root_acc = np.sum(batch.label.asnumpy()[root_ids] == pred.asnumpy()[root_ids])
root_accs.append([root_acc, len(root_ids)])

dev_acc = 1.0*np.sum([x[0] for x in accs])/np.sum([x[1] for x in accs])
dev_root_acc = 1.0*np.sum([x[0] for x in root_accs])/np.sum([x[1] for x in root_accs])
print("Epoch {:05d} | Dev Acc {:.4f} | Root Acc {:.4f}".format(
epoch, dev_acc, dev_root_acc))

if dev_root_acc > best_dev_acc:
best_dev_acc = dev_root_acc
best_epoch = epoch
model.save_parameters('best_{}.params'.format(args.seed))
else:
if best_epoch <= epoch - 10:
break

# lr decay
trainer.set_learning_rate(max(1e-5, trainer.learning_rate*0.99))
print(trainer.learning_rate)
trainer_emb.set_learning_rate(max(1e-5, trainer_emb.learning_rate*0.99))
print(trainer_emb.learning_rate)

# test
model.load_parameters('best_{}.params'.format(args.seed))
accs = []
root_accs = []
for step, batch in enumerate(test_loader):
g = batch.graph
n = g.number_of_nodes()
h = mx.nd.zeros((n, args.h_size), ctx=ctx)
c = mx.nd.zeros((n, args.h_size), ctx=ctx)
pred = model(batch, h, c).argmax(axis=1)

acc = (batch.label == pred).sum().asscalar()
accs.append([acc, len(batch.label)])
root_ids = [i for i in range(batch.graph.number_of_nodes()) if batch.graph.out_degree(i)==0]
root_acc = np.sum(batch.label.asnumpy()[root_ids] == pred.asnumpy()[root_ids])
root_accs.append([root_acc, len(root_ids)])

test_acc = 1.0*np.sum([x[0] for x in accs])/np.sum([x[1] for x in accs])
test_root_acc = 1.0*np.sum([x[0] for x in root_accs])/np.sum([x[1] for x in root_accs])
print('------------------------------------------------------------------------------------')
print("Epoch {:05d} | Test Acc {:.4f} | Root Acc {:.4f}".format(
best_epoch, test_acc, test_root_acc))

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--seed', type=int, default=41)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--child-sum', action='store_true')
parser.add_argument('--x-size', type=int, default=300)
parser.add_argument('--h-size', type=int, default=150)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--log-every', type=int, default=5)
parser.add_argument('--lr', type=float, default=0.05)
parser.add_argument('--weight-decay', type=float, default=1e-4)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--use-glove', action='store_true')
args = parser.parse_args()
print(args)
main(args)
129 changes: 129 additions & 0 deletions examples/mxnet/tree_lstm/tree_lstm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
"""
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
https://arxiv.org/abs/1503.00075
"""
import time
import itertools
import networkx as nx
import numpy as np
import mxnet as mx
from mxnet import gluon
import dgl

class _TreeLSTMCellNodeFunc(gluon.HybridBlock):
def hybrid_forward(self, F, iou, b_iou, c):
iou = F.broadcast_add(iou, b_iou)
i, o, u = iou.split(num_outputs=3, axis=1)
i, o, u = i.sigmoid(), o.sigmoid(), u.tanh()
c = i * u + c
h = o * c.tanh()

return h, c

class _TreeLSTMCellReduceFunc(gluon.HybridBlock):
def __init__(self, U_iou, U_f):
super(_TreeLSTMCellReduceFunc, self).__init__()
self.U_iou = U_iou
self.U_f = U_f

def hybrid_forward(self, F, h, c):
h_cat = h.reshape((0, -1))
f = self.U_f(h_cat).sigmoid().reshape_like(h)
c = (f * c).sum(axis=1)
iou = self.U_iou(h_cat)
return iou, c

class _TreeLSTMCell(gluon.HybridBlock):
def __init__(self, h_size):
super(_TreeLSTMCell, self).__init__()
self._apply_node_func = _TreeLSTMCellNodeFunc()
self.b_iou = self.params.get('bias', shape=(1, 3 * h_size),
init='zeros')

def message_func(self, edges):
return {'h': edges.src['h'], 'c': edges.src['c']}

def apply_node_func(self, nodes):
iou = nodes.data['iou']
b_iou, c = self.b_iou.data(iou.context), nodes.data['c']
h, c = self._apply_node_func(iou, b_iou, c)
return {'h' : h, 'c' : c}

class TreeLSTMCell(_TreeLSTMCell):
def __init__(self, x_size, h_size):
super(TreeLSTMCell, self).__init__(h_size)
self._reduce_func = _TreeLSTMCellReduceFunc(
gluon.nn.Dense(3 * h_size, use_bias=False),
gluon.nn.Dense(2 * h_size))
self.W_iou = gluon.nn.Dense(3 * h_size, use_bias=False)

def reduce_func(self, nodes):
h, c = nodes.mailbox['h'], nodes.mailbox['c']
iou, c = self._reduce_func(h, c)
return {'iou': iou, 'c': c}

class ChildSumTreeLSTMCell(_TreeLSTMCell):
def __init__(self, x_size, h_size):
super(ChildSumTreeLSTMCell, self).__init__()
self.W_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
self.U_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
self.U_f = gluon.nn.Dense(h_size)

def reduce_func(self, nodes):
h_tild = nodes.mailbox['h'].sum(axis=1)
f = self.U_f(nodes.mailbox['h']).sigmoid()
c = (f * nodes.mailbox['c']).sum(axis=1)
return {'iou': self.U_iou(h_tild), 'c': c}

class TreeLSTM(gluon.nn.Block):
def __init__(self,
num_vocabs,
x_size,
h_size,
num_classes,
dropout,
cell_type='nary',
pretrained_emb=None,
ctx=None):
super(TreeLSTM, self).__init__()
self.x_size = x_size
self.embedding = gluon.nn.Embedding(num_vocabs, x_size)
if pretrained_emb is not None:
print('Using glove')
self.embedding.initialize(ctx=ctx)
self.embedding.weight.set_data(pretrained_emb)
self.dropout = gluon.nn.Dropout(dropout)
self.linear = gluon.nn.Dense(num_classes)
cell = TreeLSTMCell if cell_type == 'nary' else ChildSumTreeLSTMCell
self.cell = cell(x_size, h_size)

def forward(self, batch, h, c):
"""Compute tree-lstm prediction given a batch.
Parameters
----------
batch : dgl.data.SSTBatch
The data batch.
h : Tensor
Initial hidden state.
c : Tensor
Initial cell state.
Returns
-------
logits : Tensor
The prediction of each node.
"""
g = batch.graph
g.register_message_func(self.cell.message_func)
g.register_reduce_func(self.cell.reduce_func)
g.register_apply_node_func(self.cell.apply_node_func)
# feed embedding
embeds = self.embedding(batch.wordid * batch.mask)
g.ndata['iou'] = self.cell.W_iou(self.dropout(embeds)) * batch.mask.expand_dims(-1)
g.ndata['h'] = h
g.ndata['c'] = c
# propagate
dgl.prop_nodes_topo(g)
# compute logits
h = self.dropout(g.ndata.pop('h'))
logits = self.linear(h)
return logits
2 changes: 1 addition & 1 deletion examples/pytorch/tree_lstm/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.data import DataLoader

import dgl
from dgl.data.tree import SST
from dgl.data.tree import SST, SSTBatch

from tree_lstm import TreeLSTM

Expand Down