Skip to content

Commit

Permalink
[backport] Fix column split race condition. (#10572) (#10580)
Browse files Browse the repository at this point in the history
  • Loading branch information
trivialfis authored Jul 12, 2024
1 parent 086ca69 commit ea7bd91
Show file tree
Hide file tree
Showing 5 changed files with 167 additions and 133 deletions.
48 changes: 41 additions & 7 deletions src/tree/common_row_partitioner.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,10 +36,11 @@ class ColumnSplitHelper {
common::PartitionBuilder<kPartitionBlockSize>* partition_builder,
common::RowSetCollection* row_set_collection)
: partition_builder_{partition_builder}, row_set_collection_{row_set_collection} {
decision_storage_.resize(num_row);
decision_bits_ = BitVector(common::Span<BitVector::value_type>(decision_storage_));
missing_storage_.resize(num_row);
missing_bits_ = BitVector(common::Span<BitVector::value_type>(missing_storage_));
auto n_bytes = BitVector::ComputeStorageSize(num_row);
decision_storage_.resize(n_bytes);
decision_bits_ = BitVector{common::Span<BitVector::value_type>{decision_storage_}};
missing_storage_.resize(n_bytes);
missing_bits_ = BitVector{common::Span<BitVector::value_type>{missing_storage_}};
}

template <typename BinIdxType, bool any_missing, bool any_cat, typename ExpandEntry>
Expand All @@ -51,14 +52,43 @@ class ColumnSplitHelper {
// we first collect all the decisions and whether the feature is missing into bit vectors.
std::fill(decision_storage_.begin(), decision_storage_.end(), 0);
std::fill(missing_storage_.begin(), missing_storage_.end(), 0);
common::ParallelFor2d(space, n_threads, [&](size_t node_in_set, common::Range1d r) {
const int32_t nid = nodes[node_in_set].nid;

this->tloc_decision_.resize(decision_storage_.size() * n_threads);
this->tloc_missing_.resize(decision_storage_.size() * n_threads);
std::fill_n(this->tloc_decision_.data(), this->tloc_decision_.size(), 0);
std::fill_n(this->tloc_missing_.data(), this->tloc_missing_.size(), 0);

// Make thread-local storage.
using T = decltype(decision_storage_)::value_type;
auto make_tloc = [&](std::vector<T>& storage, std::int32_t tidx) {
auto span = common::Span<T>{storage};
auto n = decision_storage_.size();
auto bitvec = BitVector{span.subspan(n * tidx, n)};
return bitvec;
};

common::ParallelFor2d(space, n_threads, [&](std::size_t node_in_set, common::Range1d r) {
bst_node_t const nid = nodes[node_in_set].nid;
auto tidx = omp_get_thread_num();
auto decision = make_tloc(this->tloc_decision_, tidx);
auto missing = make_tloc(this->tloc_missing_, tidx);
bst_bin_t split_cond = column_matrix.IsInitialized() ? split_conditions[node_in_set] : 0;
partition_builder_->MaskRows<BinIdxType, any_missing, any_cat>(
node_in_set, nodes, r, split_cond, gmat, column_matrix, *p_tree,
(*row_set_collection_)[nid].begin, &decision_bits_, &missing_bits_);
(*row_set_collection_)[nid].begin, &decision, &missing);
});

// Reduce thread local
auto decision = make_tloc(this->tloc_decision_, 0);
auto missing = make_tloc(this->tloc_missing_, 0);
for (std::int32_t tidx = 1; tidx < n_threads; ++tidx) {
decision |= make_tloc(this->tloc_decision_, tidx);
missing |= make_tloc(this->tloc_missing_, tidx);
}
CHECK_EQ(decision_storage_.size(), decision.NumValues());
std::copy_n(decision.Data(), decision_storage_.size(), decision_storage_.data());
std::copy_n(missing.Data(), missing_storage_.size(), missing_storage_.data());

// Then aggregate the bit vectors across all the workers.
auto rc = collective::Success() << [&] {
return collective::Allreduce(ctx, &decision_storage_, collective::Op::kBitwiseOR);
Expand All @@ -85,6 +115,10 @@ class ColumnSplitHelper {
BitVector decision_bits_{};
std::vector<BitVector::value_type> missing_storage_{};
BitVector missing_bits_{};

std::vector<BitVector::value_type> tloc_decision_;
std::vector<BitVector::value_type> tloc_missing_;

common::PartitionBuilder<kPartitionBlockSize>* partition_builder_;
common::RowSetCollection* row_set_collection_;
};
Expand Down
23 changes: 23 additions & 0 deletions tests/cpp/tree/test_approx.cc
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
#include "../../../src/tree/common_row_partitioner.h"
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h"
#include "test_column_split.h" // for TestColumnSplit
#include "test_partitioner.h"

namespace xgboost::tree {
Expand Down Expand Up @@ -150,4 +151,26 @@ TEST(Approx, PartitionerColSplit) {
mid_partitioner);
});
}

namespace {
class TestApproxColSplit : public ::testing::TestWithParam<std::tuple<bool, float>> {
public:
void Run() {
auto [categorical, sparsity] = GetParam();
TestColumnSplit(1u, categorical, "grow_histmaker", sparsity);
}
};
} // namespace

TEST_P(TestApproxColSplit, Basic) { this->Run(); }

INSTANTIATE_TEST_SUITE_P(ColumnSplit, TestApproxColSplit, ::testing::ValuesIn([]() {
std::vector<std::tuple<bool, float>> params;
for (auto categorical : {true, false}) {
for (auto sparsity : {0.0f, 0.6f}) {
params.emplace_back(categorical, sparsity);
}
}
return params;
}()));
} // namespace xgboost::tree
79 changes: 79 additions & 0 deletions tests/cpp/tree/test_column_split.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
/**
* Copyright 2023-2024, XGBoost Contributors
*/
#pragma once

#include <xgboost/data.h> // for FeatureType, DMatrix
#include <xgboost/tree_model.h> // for RegTree
#include <xgboost/tree_updater.h> // for TreeUpdater

#include <cstddef> // for size_t
#include <memory> // for shared_ptr
#include <vector> // for vector

#include "../../../src/tree/param.h" // for TrainParam
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h" // for RandomDataGenerator

namespace xgboost::tree {
inline std::shared_ptr<DMatrix> GenerateCatDMatrix(std::size_t rows, std::size_t cols,
float sparsity, bool categorical) {
if (categorical) {
std::vector<FeatureType> ft(cols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 3 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
return RandomDataGenerator(rows, cols, 0.6f).Seed(3).Type(ft).MaxCategory(17).GenerateDMatrix();
} else {
return RandomDataGenerator{rows, cols, 0.6f}.Seed(3).GenerateDMatrix();
}
}

inline void TestColumnSplit(bst_target_t n_targets, bool categorical, std::string name,
float sparsity) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;

RegTree expected_tree{n_targets, static_cast<bst_feature_t>(kCols)};
ObjInfo task{ObjInfo::kRegression};
Context ctx;
{
auto p_dmat = GenerateCatDMatrix(kRows, kCols, sparsity, categorical);
auto gpair = GenerateRandomGradients(&ctx, kRows, n_targets);
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create(name, &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, p_dmat.get(), position, {&expected_tree});
}

auto verify = [&] {
Context ctx;
auto p_dmat = GenerateCatDMatrix(kRows, kCols, sparsity, categorical);
auto gpair = GenerateRandomGradients(&ctx, kRows, n_targets);

ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create(name, &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);

std::unique_ptr<DMatrix> sliced{
p_dmat->SliceCol(collective::GetWorldSize(), collective::GetRank())};

RegTree tree{n_targets, static_cast<bst_feature_t>(kCols)};
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, sliced.get(), position, {&tree});

Json json{Object{}};
tree.SaveModel(&json);
Json expected_json{Object{}};
expected_tree.SaveModel(&expected_json);
ASSERT_EQ(json, expected_json);
};

auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, [&] { verify(); });
}
} // namespace xgboost::tree
79 changes: 4 additions & 75 deletions tests/cpp/tree/test_histmaker.cc
Original file line number Diff line number Diff line change
@@ -1,32 +1,19 @@
/**
* Copyright 2019-2023 by XGBoost Contributors
* Copyright 2019-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/tree_model.h>
#include <xgboost/tree_updater.h>

#include "../../../src/tree/param.h" // for TrainParam
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h"
#include "test_column_split.h" // for GenerateCatDMatrix

namespace xgboost::tree {
std::shared_ptr<DMatrix> GenerateDMatrix(std::size_t rows, std::size_t cols,
bool categorical = false) {
if (categorical) {
std::vector<FeatureType> ft(cols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 3 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
return RandomDataGenerator(rows, cols, 0.6f).Seed(3).Type(ft).MaxCategory(17).GenerateDMatrix();
} else {
return RandomDataGenerator{rows, cols, 0.6f}.Seed(3).GenerateDMatrix();
}
}

TEST(GrowHistMaker, InteractionConstraint) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;
auto p_dmat = GenerateDMatrix(kRows, kCols);
auto p_dmat = GenerateCatDMatrix(kRows, kCols, 0.0, false);
Context ctx;

linalg::Matrix<GradientPair> gpair({kRows}, ctx.Device());
Expand Down Expand Up @@ -69,62 +56,4 @@ TEST(GrowHistMaker, InteractionConstraint) {
ASSERT_NE(tree[tree[0].RightChild()].SplitIndex(), 0);
}
}

namespace {
void VerifyColumnSplit(int32_t rows, bst_feature_t cols, bool categorical,
RegTree const& expected_tree) {
Context ctx;
auto p_dmat = GenerateDMatrix(rows, cols, categorical);
linalg::Matrix<GradientPair> gpair({rows}, ctx.Device());
gpair.Data()->Copy(GenerateRandomGradients(rows));


ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);

std::unique_ptr<DMatrix> sliced{
p_dmat->SliceCol(collective::GetWorldSize(), collective::GetRank())};

RegTree tree{1u, cols};
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, sliced.get(), position, {&tree});

Json json{Object{}};
tree.SaveModel(&json);
Json expected_json{Object{}};
expected_tree.SaveModel(&expected_json);
ASSERT_EQ(json, expected_json);
}

void TestColumnSplit(bool categorical) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;

RegTree expected_tree{1u, kCols};
ObjInfo task{ObjInfo::kRegression};
{
Context ctx;
auto p_dmat = GenerateDMatrix(kRows, kCols, categorical);
linalg::Matrix<GradientPair> gpair({kRows}, ctx.Device());
gpair.Data()->Copy(GenerateRandomGradients(kRows));
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, p_dmat.get(), position, {&expected_tree});
}

auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(
kWorldSize, [&] { VerifyColumnSplit(kRows, kCols, categorical, expected_tree); });
}
} // anonymous namespace

TEST(GrowHistMaker, ColumnSplitNumerical) { TestColumnSplit(false); }

TEST(GrowHistMaker, ColumnSplitCategorical) { TestColumnSplit(true); }
} // namespace xgboost::tree
71 changes: 20 additions & 51 deletions tests/cpp/tree/test_quantile_hist.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,9 @@

#include "../../../src/tree/common_row_partitioner.h"
#include "../../../src/tree/hist/expand_entry.h" // for MultiExpandEntry, CPUExpandEntry
#include "../../../src/tree/param.h"
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h"
#include "test_column_split.h" // for TestColumnSplit
#include "test_partitioner.h"
#include "xgboost/data.h"

Expand Down Expand Up @@ -203,57 +203,26 @@ TEST(QuantileHist, PartitionerColSplit) { TestColumnSplitPartitioner<CPUExpandEn
TEST(QuantileHist, MultiPartitionerColSplit) { TestColumnSplitPartitioner<MultiExpandEntry>(3); }

namespace {
void VerifyColumnSplit(Context const* ctx, bst_idx_t rows, bst_feature_t cols, bst_target_t n_targets,
RegTree const& expected_tree) {
auto Xy = RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(true);
linalg::Matrix<GradientPair> gpair = GenerateRandomGradients(ctx, rows, n_targets);

ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_quantile_histmaker", ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);

std::unique_ptr<DMatrix> sliced{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};

RegTree tree{n_targets, cols};
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, sliced.get(), position, {&tree});

Json json{Object{}};
tree.SaveModel(&json);
Json expected_json{Object{}};
expected_tree.SaveModel(&expected_json);
ASSERT_EQ(json, expected_json);
}

void TestColumnSplit(bst_target_t n_targets) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;

RegTree expected_tree{n_targets, kCols};
ObjInfo task{ObjInfo::kRegression};
Context ctx;
{
auto Xy = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true);
auto gpair = GenerateRandomGradients(&ctx, kRows, n_targets);
std::unique_ptr<TreeUpdater> updater{
TreeUpdater::Create("grow_quantile_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, Xy.get(), position, {&expected_tree});
class TestHistColSplit : public ::testing::TestWithParam<std::tuple<bst_target_t, bool, float>> {
public:
void Run() {
auto [n_targets, categorical, sparsity] = GetParam();
TestColumnSplit(n_targets, categorical, "grow_quantile_histmaker", sparsity);
}

auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, [&] {
VerifyColumnSplit(&ctx, kRows, kCols, n_targets, std::cref(expected_tree));
});
}
};
} // anonymous namespace

TEST(QuantileHist, ColumnSplit) { TestColumnSplit(1); }

TEST(QuantileHist, ColumnSplitMultiTarget) { TestColumnSplit(3); }
TEST_P(TestHistColSplit, Basic) { this->Run(); }

INSTANTIATE_TEST_SUITE_P(ColumnSplit, TestHistColSplit, ::testing::ValuesIn([]() {
std::vector<std::tuple<bst_target_t, bool, float>> params;
for (auto categorical : {true, false}) {
for (auto sparsity : {0.0f, 0.6f}) {
for (bst_target_t n_targets : {1u, 3u}) {
params.emplace_back(n_targets, categorical, sparsity);
}
}
}
return params;
}()));
} // namespace xgboost::tree

0 comments on commit ea7bd91

Please sign in to comment.