Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix multi-output with alternating strategies. #9933

Merged
merged 4 commits into from
Jan 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions python-package/xgboost/testing/updater.py
Original file line number Diff line number Diff line change
Expand Up @@ -394,3 +394,14 @@ def train_result(
assert booster.feature_types == dmat.feature_types

return result


class ResetStrategy(xgb.callback.TrainingCallback):
"""Callback for testing multi-output."""

def after_iteration(self, model: xgb.Booster, epoch: int, evals_log: dict) -> bool:
if epoch % 2 == 0:
model.set_param({"multi_strategy": "multi_output_tree"})
else:
model.set_param({"multi_strategy": "one_output_per_tree"})
return False
8 changes: 4 additions & 4 deletions src/tree/updater_quantile_hist.cc
Original file line number Diff line number Diff line change
Expand Up @@ -545,12 +545,12 @@ class QuantileHistMaker : public TreeUpdater {
}

bool UpdatePredictionCache(const DMatrix *data, linalg::MatrixView<float> out_preds) override {
if (p_impl_) {
return p_impl_->UpdatePredictionCache(data, out_preds);
} else if (p_mtimpl_) {
if (out_preds.Shape(1) > 1) {
CHECK(p_mtimpl_);
return p_mtimpl_->UpdatePredictionCache(data, out_preds);
} else {
return false;
CHECK(p_impl_);
return p_impl_->UpdatePredictionCache(data, out_preds);
}
}

Expand Down
2 changes: 2 additions & 0 deletions tests/ci_build/lint_python.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ class LintersPaths:
"tests/python/test_dmatrix.py",
"tests/python/test_dt.py",
"tests/python/test_demos.py",
"tests/python/test_multi_target.py",
"tests/python/test_predict.py",
"tests/python/test_quantile_dmatrix.py",
"tests/python/test_tree_regularization.py",
Expand Down Expand Up @@ -84,6 +85,7 @@ class LintersPaths:
"tests/python/test_dt.py",
"tests/python/test_demos.py",
"tests/python/test_data_iterator.py",
"tests/python/test_multi_target.py",
"tests/python-gpu/test_gpu_data_iterator.py",
"tests/python-gpu/load_pickle.py",
"tests/test_distributed/test_with_spark/test_data.py",
Expand Down
6 changes: 1 addition & 5 deletions tests/python/test_basic_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.updater import ResetStrategy

dpath = tm.data_dir(__file__)

Expand Down Expand Up @@ -653,11 +654,6 @@ def test_slice_multi(self) -> None:
num_parallel_tree = 4
num_boost_round = 16

class ResetStrategy(xgb.callback.TrainingCallback):
def after_iteration(self, model, epoch: int, evals_log) -> bool:
model.set_param({"multi_strategy": "multi_output_tree"})
return False

booster = xgb.train(
{
"num_parallel_tree": num_parallel_tree,
Expand Down
105 changes: 105 additions & 0 deletions tests/python/test_multi_target.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
from typing import Any, Dict

from hypothesis import given, note, settings, strategies

import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.params import (
exact_parameter_strategy,
hist_cache_strategy,
hist_multi_parameter_strategy,
hist_parameter_strategy,
)
from xgboost.testing.updater import ResetStrategy, train_result


class TestTreeMethodMulti:
@given(
exact_parameter_strategy, strategies.integers(1, 20), tm.multi_dataset_strategy
)
@settings(deadline=None, print_blob=True)
def test_exact(self, param: dict, num_rounds: int, dataset: tm.TestDataset) -> None:
if dataset.name.endswith("-l1"):
return
param["tree_method"] = "exact"
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)
assert tm.non_increasing(result["train"][dataset.metric])

@given(
exact_parameter_strategy,
hist_parameter_strategy,
hist_cache_strategy,
strategies.integers(1, 20),
tm.multi_dataset_strategy,
)
@settings(deadline=None, print_blob=True)
def test_approx(
self,
param: Dict[str, Any],
hist_param: Dict[str, Any],
cache_param: Dict[str, Any],
num_rounds: int,
dataset: tm.TestDataset,
) -> None:
param["tree_method"] = "approx"
param = dataset.set_params(param)
param.update(hist_param)
param.update(cache_param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(str(result))
assert tm.non_increasing(result["train"][dataset.metric])

@given(
exact_parameter_strategy,
hist_multi_parameter_strategy,
hist_cache_strategy,
strategies.integers(1, 20),
tm.multi_dataset_strategy,
)
@settings(deadline=None, print_blob=True)
def test_hist(
self,
param: Dict[str, Any],
hist_param: Dict[str, Any],
cache_param: Dict[str, Any],
num_rounds: int,
dataset: tm.TestDataset,
) -> None:
if dataset.name.endswith("-l1"):
return
param["tree_method"] = "hist"
param = dataset.set_params(param)
param.update(hist_param)
param.update(cache_param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(str(result))
assert tm.non_increasing(result["train"][dataset.metric])


def test_multiclass() -> None:
X, y = tm.datasets.make_classification(
128, n_features=12, n_informative=10, n_classes=4
)
clf = xgb.XGBClassifier(
multi_strategy="multi_output_tree", callbacks=[ResetStrategy()], n_estimators=10
)
clf.fit(X, y, eval_set=[(X, y)])
assert clf.objective == "multi:softprob"
assert tm.non_increasing(clf.evals_result()["validation_0"]["mlogloss"])

proba = clf.predict_proba(X)
assert proba.shape == (y.shape[0], 4)


def test_multilabel() -> None:
X, y = tm.datasets.make_multilabel_classification(128)
clf = xgb.XGBClassifier(
multi_strategy="multi_output_tree", callbacks=[ResetStrategy()], n_estimators=10
)
clf.fit(X, y, eval_set=[(X, y)])
assert clf.objective == "binary:logistic"
assert tm.non_increasing(clf.evals_result()["validation_0"]["logloss"])

proba = clf.predict_proba(X)
assert proba.shape == y.shape
64 changes: 0 additions & 64 deletions tests/python/test_updaters.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
cat_parameter_strategy,
exact_parameter_strategy,
hist_cache_strategy,
hist_multi_parameter_strategy,
hist_parameter_strategy,
)
from xgboost.testing.updater import (
Expand All @@ -25,69 +24,6 @@
)


class TestTreeMethodMulti:
@given(
exact_parameter_strategy, strategies.integers(1, 20), tm.multi_dataset_strategy
)
@settings(deadline=None, print_blob=True)
def test_exact(self, param: dict, num_rounds: int, dataset: tm.TestDataset) -> None:
if dataset.name.endswith("-l1"):
return
param["tree_method"] = "exact"
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)
assert tm.non_increasing(result["train"][dataset.metric])

@given(
exact_parameter_strategy,
hist_parameter_strategy,
hist_cache_strategy,
strategies.integers(1, 20),
tm.multi_dataset_strategy,
)
@settings(deadline=None, print_blob=True)
def test_approx(
self, param: Dict[str, Any],
hist_param: Dict[str, Any],
cache_param: Dict[str, Any],
num_rounds: int,
dataset: tm.TestDataset,
) -> None:
param["tree_method"] = "approx"
param = dataset.set_params(param)
param.update(hist_param)
param.update(cache_param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(str(result))
assert tm.non_increasing(result["train"][dataset.metric])

@given(
exact_parameter_strategy,
hist_multi_parameter_strategy,
hist_cache_strategy,
strategies.integers(1, 20),
tm.multi_dataset_strategy,
)
@settings(deadline=None, print_blob=True)
def test_hist(
self,
param: Dict[str, Any],
hist_param: Dict[str, Any],
cache_param: Dict[str, Any],
num_rounds: int,
dataset: tm.TestDataset,
) -> None:
if dataset.name.endswith("-l1"):
return
param["tree_method"] = "hist"
param = dataset.set_params(param)
param.update(hist_param)
param.update(cache_param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(str(result))
assert tm.non_increasing(result["train"][dataset.metric])


class TestTreeMethod:
USE_ONEHOT = np.iinfo(np.int32).max
USE_PART = 1
Expand Down
Loading