Skip to content
/ RobLM Public

Leveraging language models for robotic tasks

Notifications You must be signed in to change notification settings

dnandha/RobLM

Repository files navigation

RobLM

Supplemental code for the thesis Leveraging Large Language Models for Autonomous Task Planning.

Installation

conda env create -f env.yml conda activate roblm

Preprocessing

python preprocess.py json_2.1.0/valid_unseen valid_unseen.json --cond knowledge_graph.dot

Training

`python roblm.py --train traindata.json [--chkpt_path <path_to_saved_model>] --model_path <path_to_new_model> --log

Evaluation

  1. Complete evaluation python roblm.py --eval validdata.json --chkpt <path_to_saved_model>
  2. Task based evaluation: validation data split across files for infile in valid/*.json; do python roblm.py --eval $infile --chkpt <path_to_saved_model>; done

About

Leveraging language models for robotic tasks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages