Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support Ultralytics YOLO models and TIMM models #2

Merged
merged 11 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
# pytorch related
*.pt
*.pth


# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
Expand Down
312 changes: 271 additions & 41 deletions nbs/demo.ipynb

Large diffs are not rendered by default.

159 changes: 159 additions & 0 deletions nbs/timm.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-style: italic\"> Available Models </span>\n",
"┏━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┓\n",
"┃<span style=\"font-weight: bold\"> Backend </span>┃<span style=\"font-weight: bold\"> Model ID </span>┃<span style=\"font-weight: bold\"> Input --&gt; Output </span>┃\n",
"┡━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━┩\n",
"│<span style=\"color: #008080; text-decoration-color: #008080\"> timm </span>│<span style=\"color: #800080; text-decoration-color: #800080\"> vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k </span>│<span style=\"color: #008000; text-decoration-color: #008000\"> image --&gt; class </span>│\n",
"│<span style=\"color: #008080; text-decoration-color: #008080\"> timm </span>│<span style=\"color: #800080; text-decoration-color: #800080\"> maxvit_xlarge_tf_512.in21k_ft_in1k </span>│<span style=\"color: #008000; text-decoration-color: #008000\"> image --&gt; class </span>│\n",
"│<span style=\"color: #008080; text-decoration-color: #008080\"> timm </span>│<span style=\"color: #800080; text-decoration-color: #800080\"> maxvit_xlarge_tf_384.in21k_ft_in1k </span>│<span style=\"color: #008000; text-decoration-color: #008000\"> image --&gt; class </span>│\n",
"│<span style=\"color: #008080; text-decoration-color: #008080\"> ... </span>│<span style=\"color: #800080; text-decoration-color: #800080\"> ... </span>│<span style=\"color: #008000; text-decoration-color: #008000\"> ... </span>│\n",
"│<span style=\"color: #008080; text-decoration-color: #008080\"> ... </span>│<span style=\"color: #800080; text-decoration-color: #800080\"> ... </span>│<span style=\"color: #008000; text-decoration-color: #008000\"> ... </span>│\n",
"└─────────┴─────────────────────────────────────────────────┴──────────────────┘\n",
"</pre>\n"
],
"text/plain": [
"\u001b[3m Available Models \u001b[0m\n",
"┏━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mBackend\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mModel ID \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mInput --> Output\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━┩\n",
"│\u001b[36m \u001b[0m\u001b[36mtimm \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35mvit_huge_patch14_clip_336.laion2b_ft_in12k_in1k\u001b[0m\u001b[35m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mimage --> class \u001b[0m\u001b[32m \u001b[0m│\n",
"│\u001b[36m \u001b[0m\u001b[36mtimm \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35mmaxvit_xlarge_tf_512.in21k_ft_in1k \u001b[0m\u001b[35m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mimage --> class \u001b[0m\u001b[32m \u001b[0m│\n",
"│\u001b[36m \u001b[0m\u001b[36mtimm \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35mmaxvit_xlarge_tf_384.in21k_ft_in1k \u001b[0m\u001b[35m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mimage --> class \u001b[0m\u001b[32m \u001b[0m│\n",
"│\u001b[36m \u001b[0m\u001b[36m... \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m... \u001b[0m\u001b[35m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m... \u001b[0m\u001b[32m \u001b[0m│\n",
"│\u001b[36m \u001b[0m\u001b[36m... \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m... \u001b[0m\u001b[35m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m... \u001b[0m\u001b[32m \u001b[0m│\n",
"└─────────┴─────────────────────────────────────────────────┴──────────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import xinfer\n",
"\n",
"xinfer.list_models(\"vit\", limit=3)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32m2024-10-11 23:43:39.344\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mxinfer.timm.timm_model\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m17\u001b[0m - \u001b[1mLoading model: mobilenetv2_050.lamb_in1k\u001b[0m\n",
"\u001b[32m2024-10-11 23:43:39.345\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mxinfer.timm.timm_model\u001b[0m:\u001b[36mload_model\u001b[0m:\u001b[36m21\u001b[0m - \u001b[1mLoading model: mobilenetv2_050.lamb_in1k\u001b[0m\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "128884c6909b4ebb9a4f3881fdaff671",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors: 0%| | 0.00/7.98M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32m2024-10-11 23:43:40.408\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mxinfer.timm.timm_model\u001b[0m:\u001b[36minference\u001b[0m:\u001b[36m27\u001b[0m - \u001b[1mRunning inference on https://ultralytics.com/images/bus.jpg\u001b[0m\n"
]
}
],
"source": [
"model = xinfer.create_model(\"mobilenetv2_050.lamb_in1k\", \"timm\")\n",
"\n",
"result = model.inference(\"https://ultralytics.com/images/bus.jpg\", top_k=10)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'class': 'minibus', 'id': 654, 'confidence': 62.94279098510742},\n",
" {'class': 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',\n",
" 'id': 734,\n",
" 'confidence': 8.970001220703125},\n",
" {'class': 'trolleybus, trolley coach, trackless trolley',\n",
" 'id': 874,\n",
" 'confidence': 4.9347052574157715},\n",
" {'class': 'ambulance', 'id': 407, 'confidence': 2.7388036251068115},\n",
" {'class': 'streetcar, tram, tramcar, trolley, trolley car',\n",
" 'id': 829,\n",
" 'confidence': 1.687123417854309},\n",
" {'class': 'jinrikisha, ricksha, rickshaw',\n",
" 'id': 612,\n",
" 'confidence': 1.6692038774490356},\n",
" {'class': 'passenger car, coach, carriage',\n",
" 'id': 705,\n",
" 'confidence': 1.348435401916504},\n",
" {'class': 'recreational vehicle, RV, R.V.',\n",
" 'id': 757,\n",
" 'confidence': 1.2413547039031982},\n",
" {'class': 'minivan', 'id': 656, 'confidence': 0.5516668558120728},\n",
" {'class': 'amphibian, amphibious vehicle',\n",
" 'id': 408,\n",
" 'confidence': 0.4996110796928406}]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "xinfer",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading
Loading