Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision, International Conference on Learning Representations (ICLR), 2021.
- The documented SuperGATConv layer with an example has been merged to the PyTorch Geometric's main branch.
- The RandomPartitionGraph is now available at PyTorch Geometric.
- This repository is based on
torch==1.4.0+cu100
andtorch-geometric==1.4.3
, which are somewhat outdated at this point (Feb 2021). If you are using recent PyTorch/CUDA/PyG, we would recommend using the PyG's. If you want to run codes in this repository, please follow #installation.
@inproceedings{
kim2021how,
title={How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision},
author={Dongkwan Kim and Alice Oh},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=Wi5KUNlqWty}
}
# In SuperGAT/
bash install.sh ${CUDA, default is cu100}
- If you have any trouble installing PyTorch Geometric, please install PyG's dependencies manually.
- Codes are tested with python
3.7.6
andnvidia/cuda:10.0-cudnn7-devel-ubuntu16.04
image. - PYG's FAQ might be helpful.
- The main train/test code is in
SuperGAT/main.py
. - If you want to see the SuperGAT layer in PyTorch Geometric
MessagePassing
grammar, refer toSuperGAT/layer.py
. - If you want to see hyperparameter settings, refer to
SuperGAT/args.yaml
andSuperGAT/arguments.py
.
python3 SuperGAT/main.py \
--dataset-class Planetoid \
--dataset-name Cora \
--custom-key EV13NSO8-ES
...
## RESULTS SUMMARY ##
best_test_perf: 0.853 +- 0.003
best_test_perf_at_best_val: 0.851 +- 0.004
best_val_perf: 0.825 +- 0.003
test_perf_at_best_val: 0.849 +- 0.004
## RESULTS DETAILS ##
best_test_perf: [0.851, 0.853, 0.857, 0.852, 0.858, 0.852, 0.847]
best_test_perf_at_best_val: [0.851, 0.849, 0.855, 0.852, 0.858, 0.848, 0.844]
best_val_perf: [0.82, 0.824, 0.83, 0.826, 0.828, 0.824, 0.822]
test_perf_at_best_val: [0.851, 0.844, 0.853, 0.849, 0.857, 0.848, 0.844]
Time for runs (s): 173.85422565042973
The default setting is 7 runs with different random seeds. If you want to change this number, change num_total_runs
in the main block of SuperGAT/main.py
.
For ogbn-arxiv, use SuperGAT/main_ogb.py
.
There are three arguments for GPU settings (--num-gpus-total
, --num-gpus-to-use
, --gpu-deny-list
).
Default values are from the author's machine, so we recommend you modify these values from SuperGAT/args.yaml
or by the command line.
--num-gpus-total
(default 4): The total number of GPUs in your machine.--num-gpus-to-use
(default 1): The number of GPUs you want to use.--gpu-deny-list
(default: [1, 2, 3]): The ids of GPUs you want to not use.
If you have four GPUs and want to use the first (cuda:0),
python3 SuperGAT/main.py \
--dataset-class Planetoid \
--dataset-name Cora \
--custom-key EV13NSO8-ES \
--num-gpus-total 4 \
--gpu-deny-list 1 2 3
Type | Model name |
---|---|
GCN | GCN |
GraphSAGE | SAGE |
GAT | GAT |
SuperGATGO | GAT |
SuperGATDP | GAT |
SuperGATSD | GAT |
SuperGATMX | GAT |
Dataset class | Dataset name |
---|---|
Planetoid | Cora |
Planetoid | CiteSeer |
Planetoid | PubMed |
PPI | PPI |
WikiCS | WikiCS |
WebKB4Univ | WebKB4Univ |
MyAmazon | Photo |
MyAmazon | Computers |
PygNodePropPredDataset | ogbn-arxiv |
MyCoauthor | CS |
MyCoauthor | Physics |
MyCitationFull | Cora_ML |
MyCitationFull | CoraFull |
MyCitationFull | DBLP |
Crocodile | Crocodile |
Chameleon | Chameleon |
Flickr | Flickr |
Type | Custom key (General) | Custom key (for PubMed) | Custom key (for ogbn-arxiv) |
---|---|---|---|
SuperGATGO | EV1O8-ES | EV1-500-ES | - |
SuperGATDP | EV2O8-ES | EV2-500-ES | - |
SuperGATSD | EV3O8-ES | EV3-500-ES | EV3-ES |
SuperGATMX | EV13NSO8-ES | EV13NSO8-500-ES | EV13NS-ES |
See SuperGAT/args.yaml
or run $ python3 SuperGAT/main.py --help
.