Official pytorch reimplementation for "Semantic Line Detection and Its Applications" [paper]
Recent works can be found in here and here.
- PyTorch 1.3.1
- CUDA 10.0
- CuDNN 7.6.5
- python 3.6
Create conda environment:
$ conda create -n SLNet python=3.6 anaconda
$ conda activate SLNet
$ pip install opencv-python==3.4.2.16
$ conda install pytorch==1.3.1 torchvision cudatoolkit=10.0 -c pytorch
Download repository:
$ git clone https://github.com/dongkwonjin/Semantic-Line-SLNet.git
-
Download SEL dataset and preprocessed data to
root/
. You can download the original dataset in here. We provide the preprocessed data to train and test the model indata
andedge
folder. You can generate these data using the source codes in Preprocessing/. We obtain the data inedge
folder, by employing HED algorithm. -
Download our network parameters to
root/
if you want to get the performance of the paper. -
Edit
config.py
. Please modifydataset_dir
andpaper_weight_dir
. -
Run with
$ cd Semantic-Line-SLNet-master/(Modeling or Preprocessing)/code/
$ python main.py
@Inproceedings{
Lee2017SLNet,
title={Semantic Line Detection and Its Applications},
author={Jun-Tae Lee, Han-Ul Kim, Chul Lee, and Chang-Su Kim},
booktitle={ICCV},
year={2017}
}