Skip to content

drei34/CharLM

Repository files navigation

PyTorch-Character-Aware-Neural-Language-Model

Build Status GitHub license

This is the PyTorch implementation of character-aware neural language model proposed in this paper by Yoon Kim.

Requirements

The code is run and tested with Python 3.5.2 and PyTorch 0.3.1.

HyperParameters

HyperParam value
LSTM batch size 20
LSTM sequence length 35
LSTM hidden units 300
epochs 35
initial learning rate 1.0
character embedding dimension 15

Demo

Train the model with split train/valid/test data.

python train.py

The trained model will saved in cache/net.pkl. Test the model.

python test.py

Best result on test set: PPl=127.2163 cross entropy loss=4.8459

Acknowledgement

This implementation borrowed ideas from

https://github.com/jarfo/kchar

https://github.com/cronos123/Character-Aware-Neural-Language-Models

About

Character-Aware Neural Language Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages