Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: dynamic baro altitude + airspeed #20

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
352 changes: 352 additions & 0 deletions examples/Log based dynamic barometer altitude .ipynb

Large diffs are not rendered by default.

Binary file added examples/ulog/dynamic_alt/10_05_17.ulg
Binary file not shown.
11 changes: 11 additions & 0 deletions px4tools/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,17 @@
please install:
pip install control
''')

try:
from .logdynamicpressure import *
except ImportError as ex:
print(ex)
print('''
WARNING: ulog module requires pyulog

please install:
pip install pyulog
''')

from ._version import get_versions
__version__ = get_versions()['version']
Expand Down
215 changes: 215 additions & 0 deletions px4tools/logdynamicpressure.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
"""
Analyze ulog for dynamic pressure
"""
from __future__ import print_function

import pandas as pd
import numpy as np
import os
import glob
from scipy.interpolate import interp1d
import pandas as pd
import numpy as np

import px4tools

POSCTRL = 2

GRAVITY = 9.80665 # earth gravity m/s/s
DENSITY = 1.225 #air density kg/m^3
BC_data = [14, 14, 14, 14, 14] # ballistic coefficient lookup table
AoS_bp_data = [-np.pi, -np.pi/2, 0, np.pi/2, np.pi] # Angle of sideslip breakpoint


def load_data(f):
"""
Read log data from a .ulg file and prepare data for dynamic pressure analysis
@f global path to file
@return dataframe to do dynamic pressure on
"""
# ulog topics needed
px4topics = ['vehicle_local_position','vehicle_local_position_setpoint',
'vehicle_attitude','sensor_combined','commander_state']
data = px4tools.read_ulog(f, px4topics)

#do resample on setpoint
df = data.concat(on='t_vehicle_local_position_setpoint_0')

# to get roll, pitch and yaw
series = [df]
msg_att = 't_vehicle_attitude_0'
roll, pitch, yaw = px4tools.series_quat2euler(
df.t_vehicle_attitude_0__f_q_0_,
df.t_vehicle_attitude_0__f_q_1_,
df.t_vehicle_attitude_0__f_q_2_,
df.t_vehicle_attitude_0__f_q_3_, msg_att)

# only consider dataseries of interest
series = [df.t_sensor_combined_0__f_baro_alt_meter,
df.t_vehicle_attitude_0__f_q_0_,
df.t_vehicle_attitude_0__f_q_1_,
df.t_vehicle_attitude_0__f_q_2_,
df.t_vehicle_attitude_0__f_q_3_,
roll, pitch, yaw,
df.t_vehicle_local_position_0__f_z,
df.t_vehicle_local_position_0__f_vx,
df.t_vehicle_local_position_0__f_vy,
df.t_vehicle_local_position_0__f_vz,
df.t_vehicle_local_position_setpoint_0__f_z,
df.t_commander_state_0__f_main_state]
df = pd.concat(series, axis=1)
df = df.dropna()
return df


def prepare_dynamicaltitude_data(df):
"""
Only consider data needed for the analysis
Subtract static baro altitude
@df dataframe
@return dataframe dfx, dfy
"""
# only consider position control
df= df[df.t_commander_state_0__f_main_state == 2]

# consider only constant altitude
df = df[df.t_vehicle_local_position_setpoint_0__f_z.diff() == 0]

# only consider parts where acceleration in z is low
df = df[df.t_vehicle_local_position_0__f_vz.diff().abs() < 2.0]

# magnitude in xy
v_xy_mag = np.linalg.norm(df[['t_vehicle_local_position_0__f_vx','t_vehicle_local_position_0__f_vy']], axis = 1)

# we are not interested in time series and want shorter names
d = {'vx': df.t_vehicle_local_position_0__f_vx.values,
'vy': df.t_vehicle_local_position_0__f_vy.values,
'vxy_mag': v_xy_mag,
'vx_b_yaw': df.t_vehicle_local_position_0__f_vx_body_yaw.values,
'vy_b_yaw': df.t_vehicle_local_position_0__f_vy_body_yaw.values,
'v_airx': df.t_vehicle_altitude_hold_0__f_v_airx.values,
'v_airy': df.t_vehicle_altitude_hold_0__f_v_airy.values,
'v_airx_b_yaw': df.t_vehicle_altitude_hold_0__f_v_airx_body_yaw.values,
'v_airy_b_yaw': df.t_vehicle_altitude_hold_0__f_v_airy_body_yaw.values,
'baro_alt': df.t_sensor_combined_0__f_baro_alt_meter.values,
'z_sp': df.t_vehicle_local_position_setpoint_0__f_z.values}
df = pd.DataFrame(d)

# group along constant altitude to compute static altitude
group = df.groupby(df.z_sp)
# subtract "static" altitude with assumption that at low speed no dynamic pressure change is present
for g, data in group:
df.loc[df.z_sp == g ,'baro_alt'] -= data[data.vxy_mag < 1.0].baro_alt.mean()
return df

def estimate_airspeed(df):
"""
Estimates airspeed from log
@df dataframe
@return dataframe with airspeed estimate
"""
msg_name = 't_vehicle_altitude_hold_0'
accZ = accZ_altitudehold(df.t_vehicle_attitude_0__f_roll,
df.t_vehicle_attitude_0__f_pitch, msg_name)
# rotate to NED frame and take horizontal components
accX = accY = accZ * 0
accN, accE, accD = px4tools.series_quatrot(accX, accY, accZ, df.t_vehicle_attitude_0__f_q_0_,
df.t_vehicle_attitude_0__f_q_1_,
df.t_vehicle_attitude_0__f_q_2_,
df.t_vehicle_attitude_0__f_q_3_,msg_name)
accN.name = msg_name + '__f_accx'
accE.name = msg_name + '__f_accy'

velN = np.zeros(len(df))
velE = np.zeros(len(df))

itp = interp1d(AoS_bp_data,BC_data)
for idx in range(1,len(df)):

dt = (df.index[idx] - df.index[idx-1]).total_seconds()
# angle of sideslip
AoS = angle_wrap(np.arctan2(velE[idx-1], velN[idx-1]) - df.t_vehicle_attitude_0__f_yaw[idx-1])

# calculate ballistic coeff
BC = itp(AoS)

# calucalte the drag coefficient
coef = DENSITY / (2 * BC)
dragN = - np.sign(velN[idx-1]) * coef * velN[idx-1]**2
dragE = - np.sign(velE[idx-1]) * coef * velE[idx-1]**2

# calculate the net accerati which is thrust and drag contribution
netAccelN = accN[idx] + dragN
netAccelE = accE[idx] + dragE

# integrate acceleration to calculate velocity
velN[idx] = velN[idx-1] + dt * netAccelN
velE[idx] = velE[idx-1] + dt * netAccelE

# add new messages to dataframe
df['t_vehicle_altitude_hold_0__f_v_airx'] = pd.Series(velN, index = df.index )
df['t_vehicle_altitude_hold_0__f_v_airy'] = pd.Series(velE, index = df.index )

#rotate airspeed into frame which corresponds to body yaw
ax0 = ax1 = df.t_vehicle_local_position_0__f_z * 0
ax2 = ax0 + 1
qax0, qax1, qax2, qax3 = px4tools.series_axangle2quat(ax0, ax1, ax2, df.t_vehicle_attitude_0__f_yaw, 'quat_axangle')
v_airx_b_yaw, v_airy_b_yaw, v_airz_b_yaw = px4tools.series_quatrot_inverse(
df.t_vehicle_altitude_hold_0__f_v_airx,
df.t_vehicle_altitude_hold_0__f_v_airy,
df.t_vehicle_local_position_0__f_vz * 0,
qax0,qax1,qax2,qax3,'body_yaw')

# rotate NED velocity into frame which corresponds to body yaw
vx_b_yaw, vy_b_yaw, vz_b_yaw = px4tools.series_quatrot_inverse(
df.t_vehicle_local_position_0__f_vx,
df.t_vehicle_local_position_0__f_vy,
df.t_vehicle_local_position_0__f_vz,
qax0,qax1,qax2,qax3,'body_yaw')

# add message
series = [df]
series += [vx_b_yaw, vy_b_yaw, v_airx_b_yaw, v_airy_b_yaw]
df = pd.concat(series, axis=1)
return df


def accZ_altitudehold(roll, pitch, msg_name):
"""
calculate the z body acceleration required to cancel gravity
"""
accZ = -GRAVITY / (np.cos(roll) * np.cos(pitch))
accZ.name = msg_name + '__f_z_body'
return accZ

def angle_wrap(angle):
if angle > np.pi:
return angle - 2*np.pi;
if angle < -np.pi:
return angle + 2*np.pi;
return angle



if __name__ == "__main__":

# ulog filename
path = '../examples/ulog/dynamic_alt'
files = glob.glob(os.path.join(path,"*.ulg"))

# loop through all files
df = pd.DataFrame()
for file in files:
data = load_data(file)
data = estimate_airspeed(data)
data = prepare_dynamicaltitude_data(data)
df = df.append(data)
df.index = list(range(len(df)))








15 changes: 15 additions & 0 deletions px4tools/ulog.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,6 +353,21 @@ def series_quatrot(x, y, z, q0, q1, q2, q3, rot_name):
def series_quatrot_inverse(x, y, z, q0, q1, q2, q3, rot_name):
return series_quatrot(x, y, z, q0, -q1, -q2, -q3, rot_name)

def series_axangle2quat(x, y, z, yaw, msg_name):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is missing an unit test

'''
Given pandas series x-z and yaw
return quaternion
'''
vec = np.array([
quat.axangle2quat([xi, yi, zi], yawi)
for xi,yi,zi,yawi in zip(x,y,z,yaw)
])
q0 = pd.Series(name=msg_name, data=vec[:,0],index=yaw.index)
q1 = pd.Series(name=msg_name, data=vec[:,1],index=yaw.index)
q2 = pd.Series(name=msg_name, data=vec[:,2],index=yaw.index)
q3 = pd.Series(name=msg_name, data=vec[:,3],index=yaw.index)
return q0, q1, q2, q3

def series_quat2euler(q0, q1, q2, q3, msg_name):
"""
Given pandas series q0-q4, compute series roll, pitch, yaw
Expand Down